BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24998357)

  • 1. Novel approach to the preparation of organic energetic film for microelectromechanical systems and microactuator applications.
    Wang J; Zhang W; Wang L; Shen R; Xu X; Ye J; Chao Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10992-6. PubMed ID: 24998357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Mechanism of 1,3,5-Trinitro-s-triazine (RDX) Deciphered by Density Functional Theory.
    Swadley MJ; Li T
    J Chem Theory Comput; 2007 Mar; 3(2):505-13. PubMed ID: 26637031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine.
    Dreger ZA; McCluskey MD; Gupta YM
    J Phys Chem A; 2012 Oct; 116(39):9680-8. PubMed ID: 22971173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic material response to ultrafast indirect laser heating.
    Dang NC; Gottfried JL; De Lucia FC
    Appl Opt; 2017 Jan; 56(3):B85-B91. PubMed ID: 28157869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering.
    Haycraft JJ; Stevens LL; Eckhardt CJ
    J Chem Phys; 2006 Jan; 124(2):024712. PubMed ID: 16422631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX): relevance for shock wave initiation.
    Dreger ZA; Gupta YM
    J Phys Chem A; 2012 Aug; 116(34):8713-7. PubMed ID: 22873636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point.
    Maharrey S; Behrens R
    J Phys Chem A; 2005 Dec; 109(49):11236-49. PubMed ID: 16331907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations of the Thermal Decomposition of RDX/HTPB Explosives.
    Wu J; Wu J; Li J; Shang Y; Chen L
    ACS Omega; 2023 May; 8(21):18851-18862. PubMed ID: 37273601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Synthesized MEMS Compatible Energetic Arrays Based on Energetic Coordination Polymer and Nano-Al with Tunable Properties.
    Ma X; Cao K; Huang X; Yang S; Ye Y; Shen R; Yang G; Zhang K
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30740-30749. PubMed ID: 32517465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: a case of cyclohexanone solvent.
    Chen G; Xia M; Lei W; Wang F; Gong X
    J Phys Chem A; 2014 Dec; 118(49):11471-8. PubMed ID: 25401274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational defects in cyclotrimethylene trinitramine (RDX) crystals.
    Pal A; Picu RC
    J Chem Phys; 2014 Jan; 140(4):044512. PubMed ID: 25669560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: anisotropic response.
    Dang NC; Dreger ZA; Gupta YM; Hooks DE
    J Phys Chem A; 2010 Nov; 114(43):11560-6. PubMed ID: 20929273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative particle dynamics with reactions: Application to RDX decomposition.
    Lísal M; Larentzos JP; Sellers MS; Schweigert IV; Brennan JK
    J Chem Phys; 2019 Sep; 151(11):114112. PubMed ID: 31542009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast vibrational energy redistribution in cyclotrimethylene trinitramine (RDX).
    Zhang L; Song H; Yang Y; Zhou Z; Zhang J; Qu Z
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38341789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.
    Zhu W; Xiao J; Zhu W; Xiao H
    J Hazard Mater; 2009 May; 164(2-3):1082-8. PubMed ID: 18938030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonadiabatic decomposition of gas-phase RDX through conical intersections: an ONIOM-CASSCF study.
    Bhattacharya A; Bernstein ER
    J Phys Chem A; 2011 May; 115(17):4135-47. PubMed ID: 21480653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perchlorate contamination from the detonation of insensitive high-explosive rounds.
    Walsh MR; Walsh ME; Ramsey CA; Brochu S; Thiboutot S; Ampleman G
    J Hazard Mater; 2013 Nov; 262():228-33. PubMed ID: 24035798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES). Part 1: ReaxFF models for cyclotrimethylene trinitramine (RDX) and 1,1-diamino-2,2-dinitroethene (FOX-7).
    Larentzos JP; Rice BM; Byrd EF; Weingarten NS; Lill JV
    J Chem Theory Comput; 2015 Feb; 11(2):381-91. PubMed ID: 26580902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas barrier film with a compositional gradient interface prepared by plasma modification of an organic/inorganic hybrid sol-gel coat.
    Kwak S; Jun J; Jung ES
    Langmuir; 2009 Jul; 25(14):8051-5. PubMed ID: 19594182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.