These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effects of cholesterol on the size distribution and bending modulus of lipid vesicles. Karal MAS; Mokta NA; Levadny V; Belaya M; Ahmed M; Ahamed MK; Ahammed S PLoS One; 2022; 17(1):e0263119. PubMed ID: 35089965 [TBL] [Abstract][Full Text] [Related]
23. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer. Ménager C; Guemghar D; Cabuil V; Lesieur S Langmuir; 2010 Oct; 26(19):15453-63. PubMed ID: 20825201 [TBL] [Abstract][Full Text] [Related]
24. Physical damage on giant vesicles membrane as a result of methylene blue photoirradiation. Mertins O; Bacellar IO; Thalmann F; Marques CM; Baptista MS; Itri R Biophys J; 2014 Jan; 106(1):162-71. PubMed ID: 24411248 [TBL] [Abstract][Full Text] [Related]
25. Disruption of giant unilamellar vesicles mimicking cell membranes induced by the pesticides glyphosate and picloram. Lemma T; Ruiz GCM; Oliveira ON; Constantino CJL Biophys Chem; 2019 Jul; 250():106176. PubMed ID: 31055199 [TBL] [Abstract][Full Text] [Related]
26. Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids. Scholtysek P; Shah SW; Müller SS; Schöps R; Frey H; Blume A; Kressler J Soft Matter; 2015 Aug; 11(30):6106-17. PubMed ID: 26133098 [TBL] [Abstract][Full Text] [Related]
27. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes. Patil YP; Kumbhalkar MD; Jadhav S Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692 [TBL] [Abstract][Full Text] [Related]
28. Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer. Bacellar IOL; Baptista MS; Junqueira HC; Wainwright M; Thalmann F; Marques CM; Schroder AP Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2366-2373. PubMed ID: 29886032 [TBL] [Abstract][Full Text] [Related]
29. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Taniguchi Y; Ohba T; Miyata H; Ohki K Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624 [TBL] [Abstract][Full Text] [Related]
30. Aggregates of nisin with various bactoprenol-containing cell wall precursors differ in size and membrane permeation capacity. Scherer K; Wiedemann I; Ciobanasu C; Sahl HG; Kubitscheck U Biochim Biophys Acta; 2013 Nov; 1828(11):2628-36. PubMed ID: 23872123 [TBL] [Abstract][Full Text] [Related]
31. Molecular-Level Modifications Induced by Photo-Oxidation of Lipid Monolayers Interacting with Erythrosin. Aoki PH; Morato LF; Pavinatto FJ; Nobre TM; Constantino CJ; Oliveira ON Langmuir; 2016 Apr; 32(15):3766-73. PubMed ID: 27017835 [TBL] [Abstract][Full Text] [Related]
32. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Islam MZ; Ariyama H; Alam JM; Yamazaki M Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335 [TBL] [Abstract][Full Text] [Related]
33. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657 [TBL] [Abstract][Full Text] [Related]
34. Rate constant of tension-induced pore formation in lipid membranes. Levadny V; Tsuboi TA; Belaya M; Yamazaki M Langmuir; 2013 Mar; 29(12):3848-52. PubMed ID: 23472875 [TBL] [Abstract][Full Text] [Related]
35. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588 [TBL] [Abstract][Full Text] [Related]
36. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. Zheng H; Jiménez-Flores R; Gragson D; Everett DW J Agric Food Chem; 2014 Apr; 62(14):3236-3243. PubMed ID: 24641452 [TBL] [Abstract][Full Text] [Related]
37. Role of Inverse-Cone-Shape Lipids in Temperature-Controlled Self-Reproduction of Binary Vesicles. Jimbo T; Sakuma Y; Urakami N; Ziherl P; Imai M Biophys J; 2016 Apr; 110(7):1551-1562. PubMed ID: 27074680 [TBL] [Abstract][Full Text] [Related]
38. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. Wei X; Jiang W; Yu J; Ding L; Hu J; Jiang G J Hazard Mater; 2015 Apr; 287():217-24. PubMed ID: 25661168 [TBL] [Abstract][Full Text] [Related]
39. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. Tamba Y; Yamazaki M J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489 [TBL] [Abstract][Full Text] [Related]
40. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Tamba Y; Yamazaki M Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]