BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24998386)

  • 1. A mechanistic link between gene regulation and genome architecture in mammalian development.
    Bonora G; Plath K; Denholtz M
    Curr Opin Genet Dev; 2014 Aug; 27():92-101. PubMed ID: 24998386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural proteins: regulators of 3D genome organization in cell fate.
    Gómez-Díaz E; Corces VG
    Trends Cell Biol; 2014 Nov; 24(11):703-11. PubMed ID: 25218583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture.
    Alpsoy A; Sood S; Dykhuizen EC
    Biology (Basel); 2021 Mar; 10(4):. PubMed ID: 33801596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chromatin architectural protein CTCF regulates gene expression of the UGT1 cluster].
    Zheng XF; Huang HY; Wu Q
    Yi Chuan; 2019 Jun; 41(6):509-523. PubMed ID: 31257199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architectural protein subclasses shape 3D organization of genomes during lineage commitment.
    Phillips-Cremins JE; Sauria ME; Sanyal A; Gerasimova TI; Lajoie BR; Bell JS; Ong CT; Hookway TA; Guo C; Sun Y; Bland MJ; Wagstaff W; Dalton S; McDevitt TC; Sen R; Dekker J; Taylor J; Corces VG
    Cell; 2013 Jun; 153(6):1281-95. PubMed ID: 23706625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation.
    Lee BK; Iyer VR
    J Biol Chem; 2012 Sep; 287(37):30906-13. PubMed ID: 22952237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Architectural Factor HMGB1 Is Involved in Genome Organization in the Human Malaria Parasite Plasmodium falciparum.
    Lu B; Liu M; Gu L; Li Y; Shen S; Guo G; Wang F; He X; Zhao Y; Shang X; Wang L; Yang G; Zhu Q; Cao J; Jiang C; Culleton R; Wei G; Zhang Q
    mBio; 2021 Apr; 12(2):. PubMed ID: 33906919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome activation and architecture in the early mammalian embryo.
    Jansz N; Torres-Padilla ME
    Curr Opin Genet Dev; 2019 Apr; 55():52-58. PubMed ID: 31128483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring CTCF and cohesin related chromatin architecture at HOXA gene cluster in primary human fibroblasts.
    Wang X; Xu M; Zhao G; Liu G; Hao D; Lv X; Liu D
    Sci China Life Sci; 2015 Sep; 58(9):860-6. PubMed ID: 26376810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interdependence of gene-regulatory elements and the 3D genome.
    Vermunt MW; Zhang D; Blobel GA
    J Cell Biol; 2019 Jan; 218(1):12-26. PubMed ID: 30442643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A WIZ/Cohesin/CTCF Complex Anchors DNA Loops to Define Gene Expression and Cell Identity.
    Justice M; Carico ZM; Stefan HC; Dowen JM
    Cell Rep; 2020 Apr; 31(2):107503. PubMed ID: 32294452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.
    Zuin J; Dixon JR; van der Reijden MI; Ye Z; Kolovos P; Brouwer RW; van de Corput MP; van de Werken HJ; Knoch TA; van IJcken WF; Grosveld FG; Ren B; Wendt KS
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):996-1001. PubMed ID: 24335803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila.
    Matthews NE; White R
    Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters.
    Srivastava S; Dhawan J; Mishra RK
    Mech Dev; 2015 Nov; 138 Pt 2():160-169. PubMed ID: 26254900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of chromatin insulators in nuclear architecture and genome function.
    Van Bortle K; Corces VG
    Curr Opin Genet Dev; 2013 Apr; 23(2):212-8. PubMed ID: 23298659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture?
    Björkegren C; Baranello L
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29547555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional chromatin decompaction in Cornelia de Lange syndrome associated with NIPBL disruption can be uncoupled from cohesin and CTCF.
    Nolen LD; Boyle S; Ansari M; Pritchard E; Bickmore WA
    Hum Mol Genet; 2013 Oct; 22(20):4180-93. PubMed ID: 23760082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity.
    Xie X; Almuzzaini B; Drou N; Kremb S; Yousif A; Farrants AÖ; Gunsalus K; Percipalle P
    FASEB J; 2018 Mar; 32(3):1296-1314. PubMed ID: 29101221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.