These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24998386)

  • 41. Chromatin organization in the mammalian nucleus.
    Gilbert N; Gilchrist S; Bickmore WA
    Int Rev Cytol; 2005; 242():283-336. PubMed ID: 15598472
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developing landscapes: genome architecture during early embryogenesis.
    van der Weide RH; de Wit E
    Curr Opin Genet Dev; 2019 Apr; 55():39-45. PubMed ID: 31112906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics and interplay of nuclear architecture, genome organization, and gene expression.
    Schneider R; Grosschedl R
    Genes Dev; 2007 Dec; 21(23):3027-43. PubMed ID: 18056419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beyond the sequence: cellular organization of genome function.
    Misteli T
    Cell; 2007 Feb; 128(4):787-800. PubMed ID: 17320514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization.
    Quinodoz S; Guttman M
    Trends Cell Biol; 2014 Nov; 24(11):651-63. PubMed ID: 25441720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dynamic actin-dependent nucleoskeleton and cell identity.
    Venit T; El Said NH; Mahmood SR; Percipalle P
    J Biochem; 2021 Apr; 169(3):243-257. PubMed ID: 33351909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The emergence of genome architecture and zygotic genome activation.
    Vallot A; Tachibana K
    Curr Opin Cell Biol; 2020 Jun; 64():50-57. PubMed ID: 32220807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation.
    Xie X; Mahmood SR; Gjorgjieva T; Percipalle P
    Nucleus; 2020 Dec; 11(1):53-65. PubMed ID: 32212905
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CTCF: master weaver of the genome.
    Phillips JE; Corces VG
    Cell; 2009 Jun; 137(7):1194-211. PubMed ID: 19563753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromatin dynamics governed by a set of nuclear structural proteins.
    Vivante A; Brozgol E; Bronshtein I; Levi V; Garini Y
    Genes Chromosomes Cancer; 2019 Jul; 58(7):437-451. PubMed ID: 30537111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome Organization: Cohesin on the Move.
    Richterova J; Huraiova B; Gregan J
    Mol Cell; 2017 May; 66(4):444-445. PubMed ID: 28525739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
    Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development.
    Kaaij LJT; van der Weide RH; Ketting RF; de Wit E
    Cell Rep; 2018 Jul; 24(1):1-10.e4. PubMed ID: 29972771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.
    Parmar JJ; Woringer M; Zimmer C
    Annu Rev Biophys; 2019 May; 48():231-253. PubMed ID: 30835504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression.
    Chien R; Zeng W; Kawauchi S; Bender MA; Santos R; Gregson HC; Schmiesing JA; Newkirk DA; Kong X; Ball AR; Calof AL; Lander AD; Groudine MT; Yokomori K
    J Biol Chem; 2011 May; 286(20):17870-8. PubMed ID: 21454523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome Organization and Chromosome Architecture.
    Bernardi G
    Cold Spring Harb Symp Quant Biol; 2015; 80():83-91. PubMed ID: 26801160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.