These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24998506)

  • 1. Advantages of ethanol dilution method for preparing GALA-modified liposomal siRNA carriers on the in vivo gene knockdown efficiency in pulmonary endothelium.
    Kusumoto K; Akita H; Santiwarangkool S; Harashima H
    Int J Pharm; 2014 Oct; 473(1-2):144-7. PubMed ID: 24998506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo.
    Hatakeyama H; Ito E; Akita H; Oishi M; Nagasaki Y; Futaki S; Harashima H
    J Control Release; 2009 Oct; 139(2):127-32. PubMed ID: 19540888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylation of the GALA Peptide Enhances the Lung-Targeting Activity of Nanocarriers That Contain Encapsulated siRNA.
    Santiwarangkool S; Akita H; Nakatani T; Kusumoto K; Kimura H; Suzuki M; Nishimura M; Sato Y; Harashima H
    J Pharm Sci; 2017 Sep; 106(9):2420-2427. PubMed ID: 28483420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery.
    Khalil IA; Hayashi Y; Mizuno R; Harashima H
    J Control Release; 2011 Dec; 156(3):374-80. PubMed ID: 21864599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA.
    Sakurai Y; Hatakeyama H; Sato Y; Akita H; Takayama K; Kobayashi S; Futaki S; Harashima H
    Biomaterials; 2011 Aug; 32(24):5733-42. PubMed ID: 21605898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation.
    Akita H; Kogure K; Moriguchi R; Nakamura Y; Higashi T; Nakamura T; Serada S; Fujimoto M; Naka T; Futaki S; Harashima H
    J Control Release; 2010 May; 143(3):311-7. PubMed ID: 20080139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo.
    Sato Y; Hatakeyama H; Sakurai Y; Hyodo M; Akita H; Harashima H
    J Control Release; 2012 Nov; 163(3):267-76. PubMed ID: 23000694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium.
    Kusumoto K; Akita H; Ishitsuka T; Matsumoto Y; Nomoto T; Furukawa R; El-Sayed A; Hatakeyama H; Kajimoto K; Yamada Y; Kataoka K; Harashima H
    ACS Nano; 2013 Sep; 7(9):7534-41. PubMed ID: 23909689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system.
    Sakurai Y; Hatakeyama H; Akita H; Oishi M; Nagasaki Y; Futaki S; Harashima H
    Biol Pharm Bull; 2009 May; 32(5):928-32. PubMed ID: 19420766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic acid controls the uptake pathway and intracellular trafficking of an octaarginine-modified gene vector in CD44 positive- and CD44 negative-cells.
    Yamada Y; Hashida M; Harashima H
    Biomaterials; 2015 Jun; 52():189-98. PubMed ID: 25818425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape.
    El-Sayed A; Masuda T; Khalil I; Akita H; Harashima H
    J Control Release; 2009 Sep; 138(2):160-7. PubMed ID: 19465073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of: Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation.
    Akita H; Kogure K; Moriguchi R; Nakamura Y; Higashi T; Nakamura T; Serada S; Fujimoto M; Naka T; Futaki S; Harashima H
    J Control Release; 2011 Jan; 149(1):58-64. PubMed ID: 20826039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung.
    Ishitsuka T; Akita H; Harashima H
    J Control Release; 2011 Aug; 154(1):77-83. PubMed ID: 21619903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid.
    Hatakeyama H; Akita H; Ito E; Hayashi Y; Oishi M; Nagasaki Y; Danev R; Nagayama K; Kaji N; Kikuchi H; Baba Y; Harashima H
    Biomaterials; 2011 Jun; 32(18):4306-16. PubMed ID: 21429576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An apolipoprotein E modified liposomal nanoparticle: ligand dependent efficiency as a siRNA delivery carrier for mouse-derived brain endothelial cells.
    Tamaru M; Akita H; Kajimoto K; Sato Y; Hatakeyama H; Harashima H
    Int J Pharm; 2014 Apr; 465(1-2):77-82. PubMed ID: 24530390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multifunctional Envelope-Type Nano Device Containing a pH-Sensitive Cationic Lipid for Efficient Delivery of Short Interfering RNA to Hepatocytes In Vivo.
    Sato Y; Harashima H; Kohara M
    Methods Mol Biol; 2016; 1364():71-8. PubMed ID: 26472443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Envelope-Type Nano Device: Evolution from Nonselective to Active Targeting System.
    Hayashi Y; Hatakeyama H; Kajimoto K; Hyodo M; Akita H; Harashima H
    Bioconjug Chem; 2015 Jul; 26(7):1266-76. PubMed ID: 25938819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system.
    Sakurai Y; Hatakeyama H; Sato Y; Hyodo M; Akita H; Ohga N; Hida K; Harashima H
    J Control Release; 2014 Jan; 173():110-8. PubMed ID: 24120854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving in vivo hepatic transfection activity by controlling intracellular trafficking: the function of GALA and maltotriose.
    Akita H; Masuda T; Nishio T; Niikura K; Ijiro K; Harashima H
    Mol Pharm; 2011 Aug; 8(4):1436-42. PubMed ID: 21598999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes.
    Ukawa M; Akita H; Masuda T; Hayashi Y; Konno T; Ishihara K; Harashima H
    Biomaterials; 2010 Aug; 31(24):6355-62. PubMed ID: 20537380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.