These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 2499884)
21. Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. Leffers H; Kjems J; Ostergaard L; Larsen N; Garrett RA J Mol Biol; 1987 May; 195(1):43-61. PubMed ID: 3116261 [TBL] [Abstract][Full Text] [Related]
22. Evolutionary relationships among eubacteria, cyanobacteria, and chloroplasts: evidence from the rpoC1 gene of Anabaena sp. strain PCC 7120. Bergsland KJ; Haselkorn R J Bacteriol; 1991 Jun; 173(11):3446-55. PubMed ID: 1904436 [TBL] [Abstract][Full Text] [Related]
24. Archaebacterial malate dehydrogenase: the amino-terminal sequence of the enzyme from Sulfolobus acidocaldarius is homologous to the eubacterial and eukaryotic malate dehydrogenases. Görisch H; Jany KD FEBS Lett; 1989 Apr; 247(2):259-62. PubMed ID: 2497031 [TBL] [Abstract][Full Text] [Related]
25. Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Comparison with the respective gene structure of the closely related extreme thermophile Methanothermus fervidus. Fabry S; Lang J; Niermann T; Vingron M; Hensel R Eur J Biochem; 1989 Feb; 179(2):405-13. PubMed ID: 2492940 [TBL] [Abstract][Full Text] [Related]
26. Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. Olsen GJ; Pace NR; Nuell M; Kaine BP; Gupta R; Woese CR J Mol Evol; 1985; 22(4):301-7. PubMed ID: 3936935 [TBL] [Abstract][Full Text] [Related]
27. Characterization of a superoxide dismutase gene from the archaebacterium Methanobacterium thermoautotrophicum. Takao M; Oikawa A; Yasui A Arch Biochem Biophys; 1990 Nov; 283(1):210-6. PubMed ID: 2122808 [TBL] [Abstract][Full Text] [Related]
28. Primary structure of glyceraldehyde-3-phosphate dehydrogenase deduced from the nucleotide sequence of the thermophilic archaebacterium Methanothermus fervidus. Fabry S; Hensel R Gene; 1988 Apr; 64(2):189-97. PubMed ID: 2841192 [TBL] [Abstract][Full Text] [Related]
29. The genome of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius does not contain repetitive sequences. Vashakidze RP; Chinchaladze DZ; Prangishvili DA Mol Biol Rep; 1987; 12(2):123-6. PubMed ID: 3118185 [TBL] [Abstract][Full Text] [Related]
30. Structure, function, and evolution of the family of superoxide dismutase proteins from halophilic archaebacteria. Joshi P; Dennis PP J Bacteriol; 1993 Mar; 175(6):1572-9. PubMed ID: 8449866 [TBL] [Abstract][Full Text] [Related]
31. Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium. Sano K; Taguchi A; Furumoto H; Uda T; Itoh T Biochem Biophys Res Commun; 1999 Oct; 264(1):24-8. PubMed ID: 10527834 [TBL] [Abstract][Full Text] [Related]
32. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Achenbach-Richter L; Gupta R; Zillig W; Woese CR Syst Appl Microbiol; 1988; 10():231-40. PubMed ID: 11542150 [TBL] [Abstract][Full Text] [Related]
33. An archaebacterial gene from Methanococcus vannielii encoding a protein homologous to the ribosomal protein L10 family. Köpke AK; Baier G; Wittmann-Liebold B FEBS Lett; 1989 Apr; 247(2):167-72. PubMed ID: 2497026 [TBL] [Abstract][Full Text] [Related]
34. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Cotton JA; McInerney JO Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17252-5. PubMed ID: 20852068 [TBL] [Abstract][Full Text] [Related]
35. Conservation of primary structure in the hisI gene of the archaebacterium, Methanococcus vannielii, the eubacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae. Beckler GS; Reeve JN Mol Gen Genet; 1986 Jul; 204(1):133-40. PubMed ID: 3018439 [TBL] [Abstract][Full Text] [Related]
36. On the early evolution of RNA polymerase. Lazcano A; Fastag J; Gariglio P; Ramírez C; Oró J J Mol Evol; 1988; 27(4):365-76. PubMed ID: 3146647 [TBL] [Abstract][Full Text] [Related]
37. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria. Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356 [TBL] [Abstract][Full Text] [Related]
38. Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms. Köpke AK; Wittmann-Liebold B Can J Microbiol; 1989 Jan; 35(1):11-20. PubMed ID: 2497935 [TBL] [Abstract][Full Text] [Related]