These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24998991)

  • 1. Adaptive control of center of mass (global) motion and its joint (local) origin in gait.
    Yang F; Pai YC
    J Biomech; 2014 Aug; 47(11):2797-800. PubMed ID: 24998991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults?
    Yang F; Pai YC
    J Biomech; 2014 Dec; 47(16):3807-12. PubMed ID: 25468302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration in community-dwelling older adults' level walking following perturbation training.
    Yang F; Pai CY
    J Biomech; 2013 Sep; 46(14):2463-8. PubMed ID: 23978691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic stability and compensatory stepping responses during anterior gait-slip perturbations in people with chronic hemiparetic stroke.
    Kajrolkar T; Yang F; Pai YC; Bhatt T
    J Biomech; 2014 Aug; 47(11):2751-8. PubMed ID: 24909333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent influence of gait speed and step length on stability and fall risk.
    Espy DD; Yang F; Bhatt T; Pai YC
    Gait Posture; 2010 Jul; 32(3):378-82. PubMed ID: 20655750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is There an Optimal Recovery Step Landing Zone Against Slip-Induced Backward Falls During Walking?
    Wang S; Pai YC; Bhatt T
    Ann Biomed Eng; 2020 Jun; 48(6):1768-1778. PubMed ID: 32166627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted threshold against forward and backward loss of balance for perturbed walking.
    Bahari H; Vette AH; Hebert JS; Rouhani H
    J Biomech; 2019 Oct; 95():109315. PubMed ID: 31455499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related alterations in reactive stepping following unexpected mediolateral perturbations during gait initiation.
    Shulman D; Spencer A; Vallis LA
    Gait Posture; 2018 Jul; 64():130-134. PubMed ID: 29902716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of reactive response to slip-like perturbations: effect of explicit cues on paretic versus non-paretic side stepping and fall-risk.
    Patel P; Bhatt T
    Exp Brain Res; 2015 Nov; 233(11):3047-58. PubMed ID: 26289480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of center of mass motion state through cuing and decoupling of spontaneous gait parameters in level walking.
    Espy DD; Yang F; Pai YC
    J Biomech; 2010 Sep; 43(13):2548-53. PubMed ID: 20542513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of individual lower limb joints in reactive stability control following a novel slip in gait.
    Yang F; Pai YC
    J Biomech; 2010 Feb; 43(3):397-404. PubMed ID: 19896133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center of mass and base of support interaction during gait.
    Lugade V; Lin V; Chou LS
    Gait Posture; 2011 Mar; 33(3):406-11. PubMed ID: 21211977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.