BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24999015)

  • 1. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition.
    Yu H; Zhou P; Deng M; Shang Z
    J Chem Inf Model; 2014 Jul; 54(7):2022-32. PubMed ID: 24999015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility.
    Antes I
    Proteins; 2010 Apr; 78(5):1084-104. PubMed ID: 20017216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis of peptide-protein binding strategies.
    London N; Movshovitz-Attias D; Schueler-Furman O
    Structure; 2010 Feb; 18(2):188-99. PubMed ID: 20159464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic consequences of stapling side-chains on a peptide ligand using a lactam-bridge: A theoretical study on anti-angiogenic peptides targeting VEGF.
    Kalathingal M; Rhee YM
    Proteins; 2024 Aug; 92(8):959-974. PubMed ID: 38602129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-binding peptides: Binding-upon-folding versus folding-upon-binding.
    Li Z; Yan F; Miao Q; Meng Y; Wen L; Jiang Q; Zhou P
    J Theor Biol; 2019 May; 469():25-34. PubMed ID: 30802465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamic determinants of protein-peptide recognition.
    Dagliyan O; Proctor EA; D'Auria KM; Ding F; Dokholyan NV
    Structure; 2011 Dec; 19(12):1837-45. PubMed ID: 22153506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-atom Monte Carlo approach to protein-peptide binding.
    Staneva I; Wallin S
    J Mol Biol; 2009 Nov; 393(5):1118-28. PubMed ID: 19733177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is protein context responsible for peptide-mediated interactions?
    Zhou P; Miao Q; Yan F; Li Z; Jiang Q; Wen L; Meng Y
    Mol Omics; 2019 Aug; 15(4):280-295. PubMed ID: 31112188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-ligand docking using hamiltonian replica exchange simulations with soft core potentials.
    Luitz MP; Zacharias M
    J Chem Inf Model; 2014 Jun; 54(6):1669-75. PubMed ID: 24855894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water, shape recognition, salt bridges, and cation-pi interactions differentiate peptide recognition of the HIV rev-responsive element.
    Michael LA; Chenault JA; Miller BR; Knolhoff AM; Nagan MC
    J Mol Biol; 2009 Sep; 392(3):774-86. PubMed ID: 19631217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for evaluating the specificity of indirect readout in protein-DNA recognition.
    Yamasaki S; Terada T; Kono H; Shimizu K; Sarai A
    Nucleic Acids Res; 2012 Sep; 40(17):e129. PubMed ID: 22618872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative binding modes of proline-rich peptides binding to the GYF domain.
    Gu W; Kofler M; Antes I; Freund C; Helms V
    Biochemistry; 2005 May; 44(17):6404-15. PubMed ID: 15850374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-dependent conformational energy of DNA derived from molecular dynamics simulations: toward understanding the indirect readout mechanism in protein-DNA recognition.
    Araúzo-Bravo MJ; Fujii S; Kono H; Ahmad S; Sarai A
    J Am Chem Soc; 2005 Nov; 127(46):16074-89. PubMed ID: 16287294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions.
    Zhou GP; Troy FA
    Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures.
    Larson SM; Davidson AR
    Protein Sci; 2000 Nov; 9(11):2170-80. PubMed ID: 11152127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design.
    You W; Huang YM; Kizhake S; Natarajan A; Chang CE
    PLoS Comput Biol; 2016 Aug; 12(8):e1005057. PubMed ID: 27560145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how.
    London N; Raveh B; Schueler-Furman O
    Curr Opin Struct Biol; 2013 Dec; 23(6):894-902. PubMed ID: 24138780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins.
    Cortajarena AL; Kajander T; Pan W; Cocco MJ; Regan L
    Protein Eng Des Sel; 2004 Apr; 17(4):399-409. PubMed ID: 15166314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain.
    He P; Wu W; Wang HD; Liao KL; Zhang W; Lv FL; Yang K
    J Theor Biol; 2014 Jan; 340():30-7. PubMed ID: 24021866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.