These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 24999030)

  • 21. [Effects of neurotransmitters and blockers on electroretinogram c-wave and light peak of the chick].
    Asamizu N
    Nippon Ganka Gakkai Zasshi; 1989 Dec; 93(12):1098-107. PubMed ID: 2576498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogram b-wave amplitude from the isolated superfused vertebrate retina.
    Siapich SA; Banat M; Albanna W; Hescheler J; Lüke M; Schneider T
    Acta Ophthalmol; 2009 Nov; 87(8):854-65. PubMed ID: 20002018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of dopamine D
    Popova E; Kostov M; Kupenova P
    Eye Vis (Lond); 2016; 3():32. PubMed ID: 27981058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of 2-amino-4-phosphonobutyrate on ERG OFF-response after glycinergic and GABAergic blockade.
    Popova E; Kupenova P; Vitanova L; Mitova L
    Vision Res; 1995 Jul; 35(14):1945-9. PubMed ID: 7660600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of the components of the rat dark-adapted electroretinogram by the three subtypes of GABA receptors.
    Möller A; Eysteinsson T
    Vis Neurosci; 2003; 20(5):535-42. PubMed ID: 14977332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GABAergic control on the intensity-response function of ERG waves under different background illumination.
    Popova E; Penchev A
    Biomed Biochim Acta; 1990; 49(10):1005-13. PubMed ID: 1964375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Participation of the GABAergic system of the turtle retina in the light adaptation process.
    Kupenova P; Vitanova L; Mitova L; Belcheva S
    Acta Physiol Scand; 1991 Oct; 143(2):203-10. PubMed ID: 1962524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of picrotoxin on the turtle's electroretinogram under different background illumination.
    Kupenova P; Belcheva S; Vitanova L; Penchev A
    Acta Physiol Pharmacol Bulg; 1986; 12(2):40-8. PubMed ID: 3020874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina.
    Vitanova L; Kupenova P; Haverkamp S; Popova E; Mitova L; Wässle H
    Vision Res; 2001 Mar; 41(6):691-704. PubMed ID: 11248259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. M-wave of the toad electroretinogram.
    Katz BJ; Wen R; Zheng JB; Xu ZA; Oakley B
    J Neurophysiol; 1991 Dec; 66(6):1927-40. PubMed ID: 1812226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram.
    Mojumder DK; Sherry DM; Frishman LJ
    J Physiol; 2008 May; 586(10):2551-80. PubMed ID: 18388140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of picrotoxin on the retinal sensitivity at different levels of background illumination.
    Vitanova L; Penchev A; Kupenova P; Belcheva S
    Physiol Bohemoslov; 1987; 36(5):463-70. PubMed ID: 2962211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of picrotoxin and strychnine on the spectral sensitivity of the turtle ERG b- and d-waves: II. Light adaptation.
    Vitanova L; Kupenova P; Popova E; Mitova L
    Acta Physiol Scand; 1997 Mar; 159(3):227-35. PubMed ID: 9079153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats.
    Bui BV; Fortune B
    Vis Neurosci; 2006; 23(2):155-67. PubMed ID: 16638169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis.
    Wong KY; Adolph AR; Dowling JE
    J Neurophysiol; 2005 Jan; 93(1):84-93. PubMed ID: 15229213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between the serotoninergic and GABAergic systems in frog retina as revealed by electroretinogram.
    Popova E; Kupenova P
    Acta Neurobiol Exp (Wars); 2017; 77(4):351-361. PubMed ID: 29369300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.