These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems. Xia K; Wei GW Comput Math Appl; 2014 Oct; 68(7):719-745. PubMed ID: 25309038 [TBL] [Abstract][Full Text] [Related]
3. MIB method for elliptic equations with multi-material interfaces. Xia K; Zhan M; Wei GW J Comput Phys; 2011 Jun; 230(12):4588-4615. PubMed ID: 21691433 [TBL] [Abstract][Full Text] [Related]
4. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS. Mu L; Wang J; Wei G; Ye X; Zhao S J Comput Phys; 2013 Oct; 250():106-125. PubMed ID: 24072935 [TBL] [Abstract][Full Text] [Related]
5. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. Xia K; Zhan M; Wan D; Wei GW J Comput Phys; 2012 Feb; 231(4):1440-1461. PubMed ID: 22586356 [TBL] [Abstract][Full Text] [Related]
6. Second order Method for Solving 3D Elasticity Equations with Complex Interfaces. Wang B; Xia K; Wei GW J Comput Phys; 2015 Aug; 294():405-438. PubMed ID: 25914422 [TBL] [Abstract][Full Text] [Related]
7. Matched Interface and Boundary Method for Elasticity Interface Problems. Wang B; Xia K; Wei GW J Comput Appl Math; 2015 Sep; 285():203-225. PubMed ID: 25914439 [TBL] [Abstract][Full Text] [Related]
8. Computational methods for optical molecular imaging. Chen D; Wei GW; Cong WX; Wang G Commun Numer Methods Eng; 2009; 25(12):1137-1161. PubMed ID: 20485461 [TBL] [Abstract][Full Text] [Related]
9. Weak Galerkin finite element method for second order problems on curvilinear polytopal meshes with Lipschitz continuous edges or faces. Guan Q; Queisser G; Zhao W Comput Math Appl; 2023 Oct; 148():282-292. PubMed ID: 39091434 [TBL] [Abstract][Full Text] [Related]
10. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems. An N; Yu X; Chen H; Huang C; Liu Z J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785 [TBL] [Abstract][Full Text] [Related]
11. Treatment of charge singularities in implicit solvent models. Geng W; Yu S; Wei G J Chem Phys; 2007 Sep; 127(11):114106. PubMed ID: 17887827 [TBL] [Abstract][Full Text] [Related]
13. Multiscale molecular dynamics using the matched interface and boundary method. Geng W; Wei GW J Comput Phys; 2011 Jan; 230(2):435-457. PubMed ID: 21088761 [TBL] [Abstract][Full Text] [Related]
14. Multi-level hp-finite cell method for embedded interface problems with application in biomechanics. Elhaddad M; Zander N; Bog T; Kudela L; Kollmannsberger S; Kirschke J; Baum T; Ruess M; Rank E Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2951. PubMed ID: 29265715 [TBL] [Abstract][Full Text] [Related]
15. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079 [TBL] [Abstract][Full Text] [Related]
16. Exact subgrid interface correction schemes for elliptic interface problems. Huh JS; Sethian JA Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9874-9. PubMed ID: 18635685 [TBL] [Abstract][Full Text] [Related]
17. A posteriori error approximation in discontinuous Galerkin method on polygonal meshes in elliptic problems. Jaśkowiec J; Pamin J Sci Rep; 2023 Jul; 13(1):10791. PubMed ID: 37402782 [TBL] [Abstract][Full Text] [Related]
18. A massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems. Dryja M; Krzyżanowski P Numer Math (Heidelb); 2016; 132(2):347-367. PubMed ID: 28615738 [TBL] [Abstract][Full Text] [Related]