BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 24999584)

  • 1. Prevalent structural disorder carries signature of prokaryotic adaptation to oxic atmosphere.
    Panda A; Ghosh TC
    Gene; 2014 Sep; 548(1):134-41. PubMed ID: 24999584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic prokaryotes do not have higher GC contents than anaerobic prokaryotes, but obligate aerobic prokaryotes have.
    Aslam S; Lan XR; Zhang BW; Chen ZL; Wang L; Niu DK
    BMC Evol Biol; 2019 Jan; 19(1):35. PubMed ID: 30691392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic GC level, optimal growth temperature, and genome size in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    Biochem Biophys Res Commun; 2006 Aug; 347(1):1-3. PubMed ID: 16815305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of aerobic and anaerobic prokaryotes to identify correlation between oxygen requirement and gene-gene functional association patterns.
    Lin Y; Wu H
    Genome Inform; 2009 Oct; 23(1):72-84. PubMed ID: 20180263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life.
    Xue B; Dunker AK; Uversky VN
    J Biomol Struct Dyn; 2012; 30(2):137-49. PubMed ID: 22702725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen and the spatial structure of microbial communities.
    Fenchel T; Finlay B
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):553-69. PubMed ID: 18823390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of intra-genomic GC content homogeneity within prokaryotes.
    Bohlin J; Snipen L; Hardy SP; Kristoffersen AB; Lagesen K; Dønsvik T; Skjerve E; Ussery DW
    BMC Genomics; 2010 Aug; 11():464. PubMed ID: 20691090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ArcA loss in Shewanella oneidensis revealed by comparative proteomics under aerobic and anaerobic conditions.
    Yuan J; Wei B; Lipton MS; Gao H
    Proteomics; 2012 Jun; 12(12):1957-69. PubMed ID: 22623420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes.
    Naya H; Romero H; Zavala A; Alvarez B; Musto H
    J Mol Evol; 2002 Sep; 55(3):260-4. PubMed ID: 12187379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the origin of genomic adaptation at high temperature for prokaryotic organisms.
    Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2005 May; 330(3):629-32. PubMed ID: 15809043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.
    Farquhar J; Peters M; Johnston DT; Strauss H; Masterson A; Wiechert U; Kaufman AJ
    Nature; 2007 Oct; 449(7163):706-9. PubMed ID: 17928857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Anaerobiosis beyond anaerobic bacteria: its role in the recovery of aerobic microorganisms from purulent samples].
    Litterio Bürki MR; Lopardo H
    Rev Argent Microbiol; 2010; 42(2):102-7. PubMed ID: 20589330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of metabolic and enzymic machinery to fit lifestyle and environment.
    Hochachka PW
    Biochem Soc Symp; 1976; (41):3-31. PubMed ID: 788718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaining and losing the thermophilic adaptation in prokaryotes.
    Puigbò P; Pasamontes A; Garcia-Vallve S
    Trends Genet; 2008 Jan; 24(1):10-4. PubMed ID: 18054113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic and anaerobic nonmicrobial methane emissions from plant material.
    Wang ZP; Xie ZQ; Zhang BC; Hou LY; Zhou YH; Li LH; Han XG
    Environ Sci Technol; 2011 Nov; 45(22):9531-7. PubMed ID: 21961564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering.
    Petsch ST; Eglington TI; Edwards KJ
    Science; 2001 May; 292(5519):1127-31. PubMed ID: 11283356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of the protozoan Colpoda maupasi to Martian conditions of atmospheric pressure and low partial pressure of oxygen.
    Lozina-Lozinsky LK; Bychenkova VN
    Life Sci Space Res; 1969; 7():149-55. PubMed ID: 11949684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.
    Sun N; Pan C; Nickell S; Mann M; Baumeister W; Nagy I
    J Proteome Res; 2010 Sep; 9(9):4839-50. PubMed ID: 20669988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of high protein aquaculture feed under variable oxic conditions.
    Torres-Beristain B; Verdegem M; Kerepeczki E; Verreth J
    Water Res; 2006 Apr; 40(7):1341-50. PubMed ID: 16549085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus.
    Mols M; Pier I; Zwietering MH; Abee T
    Int J Food Microbiol; 2009 Nov; 135(3):303-11. PubMed ID: 19762101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.