These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 24999765)
1. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation. Osberger TJ; White MC J Am Chem Soc; 2014 Aug; 136(31):11176-81. PubMed ID: 24999765 [TBL] [Abstract][Full Text] [Related]
2. C-H to C-N Cross-Coupling of Sulfonamides with Olefins. Ma R; White MC J Am Chem Soc; 2018 Mar; 140(9):3202-3205. PubMed ID: 29432000 [TBL] [Abstract][Full Text] [Related]
3. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis. Ammann SE; Liu W; White MC Angew Chem Int Ed Engl; 2016 Aug; 55(33):9571-5. PubMed ID: 27376625 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular aerobic oxidative allylic amination of simple alkenes with diarylamines catalyzed by the Pd(OCOCF3)2/NPMoV/O2 system. Shimizu Y; Obora Y; Ishii Y Org Lett; 2010 Mar; 12(6):1372-4. PubMed ID: 20158264 [TBL] [Abstract][Full Text] [Related]
6. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes. Xiong P; Xu F; Qian XY; Yohannes Y; Song J; Lu X; Xu HC Chemistry; 2016 Mar; 22(13):4379-83. PubMed ID: 26878987 [TBL] [Abstract][Full Text] [Related]
7. Catalyst-controlled C-O versus C-N allylic functionalization of terminal olefins. Strambeanu II; White MC J Am Chem Soc; 2013 Aug; 135(32):12032-7. PubMed ID: 23855956 [TBL] [Abstract][Full Text] [Related]
8. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Ali SZ; Budaitis BG; Fontaine DFA; Pace AL; Garwin JA; White MC Science; 2022 Apr; 376(6590):276-283. PubMed ID: 35420962 [TBL] [Abstract][Full Text] [Related]
9. Brønsted base-modulated regioselective pd-catalyzed intramolecular aerobic oxidative amination of alkenes: formation of seven-membered amides and evidence for allylic C-H activation. Wu L; Qiu S; Liu G Org Lett; 2009 Jun; 11(12):2707-10. PubMed ID: 19456146 [TBL] [Abstract][Full Text] [Related]
10. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and S(N)2 C-O bond formation. Liu G; Stahl SS J Am Chem Soc; 2006 Jun; 128(22):7179-81. PubMed ID: 16734468 [TBL] [Abstract][Full Text] [Related]
11. Scope and mechanism of allylic C-H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone. Yin G; Wu Y; Liu G J Am Chem Soc; 2010 Sep; 132(34):11978-87. PubMed ID: 20690676 [TBL] [Abstract][Full Text] [Related]
12. Terminal olefins to chromans, isochromans, and pyrans via allylic C-H oxidation. Ammann SE; Rice GT; White MC J Am Chem Soc; 2014 Aug; 136(31):10834-7. PubMed ID: 24983326 [TBL] [Abstract][Full Text] [Related]
13. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification. Sharma A; Hartwig JF J Am Chem Soc; 2013 Nov; 135(47):17983-9. PubMed ID: 24156776 [TBL] [Abstract][Full Text] [Related]
14. Asymmetric Allylic C-H Alkylation via Palladium(II)/ cis-ArSOX Catalysis. Liu W; Ali SZ; Ammann SE; White MC J Am Chem Soc; 2018 Aug; 140(34):10658-10662. PubMed ID: 30091907 [TBL] [Abstract][Full Text] [Related]
15. Pd(II)-catalyzed allylic C-H amination for the preparation of 1,2- and 1,3-cyclic ureas. Nishikawa Y; Kimura S; Kato Y; Yamazaki N; Hara O Org Lett; 2015 Feb; 17(4):888-91. PubMed ID: 25632830 [TBL] [Abstract][Full Text] [Related]
16. Copper-catalyzed oxidative amination and allylic amination of alkenes. Liwosz TW; Chemler SR Chemistry; 2013 Sep; 19(38):12771-7. PubMed ID: 23878099 [TBL] [Abstract][Full Text] [Related]
17. A catalytic, Brønsted base strategy for intermolecular allylic C-H amination. Reed SA; Mazzotti AR; White MC J Am Chem Soc; 2009 Aug; 131(33):11701-6. PubMed ID: 19645492 [TBL] [Abstract][Full Text] [Related]
18. Catalytic enantioselective allylic amination of unactivated terminal olefins via an ene reaction/[2,3]-rearrangement. Bao H; Tambar UK J Am Chem Soc; 2012 Nov; 134(45):18495-8. PubMed ID: 23106555 [TBL] [Abstract][Full Text] [Related]
19. Brønsted base-modulated regioselectivity in the aerobic oxidative amination of styrene catalyzed by palladium. Timokhin VI; Stahl SS J Am Chem Soc; 2005 Dec; 127(50):17888-93. PubMed ID: 16351120 [TBL] [Abstract][Full Text] [Related]
20. Allylic C-H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. Campbell AN; White PB; Guzei IA; Stahl SS J Am Chem Soc; 2010 Nov; 132(43):15116-9. PubMed ID: 20929224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]