These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 24999997)
1. Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Chen K; Wu L; Jiang X; Lu Z; Han H Biosens Bioelectron; 2014 Dec; 62():196-200. PubMed ID: 24999997 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Wu L; Xiao X; Chen K; Yin W; Li Q; Wang P; Lu Z; Ma J; Han H Biosens Bioelectron; 2017 Jun; 92():321-327. PubMed ID: 27839730 [TBL] [Abstract][Full Text] [Related]
3. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Chen K; Han H; Luo Z; Wang Y; Wang X Biosens Bioelectron; 2012 Apr; 34(1):118-24. PubMed ID: 22342698 [TBL] [Abstract][Full Text] [Related]
4. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Zheng J; Hu Y; Bai J; Ma C; Li J; Li Y; Shi M; Tan W; Yang R Anal Chem; 2014 Feb; 86(4):2205-12. PubMed ID: 24437937 [TBL] [Abstract][Full Text] [Related]
5. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy. Hu J; Zhang CY Anal Chem; 2010 Nov; 82(21):8991-7. PubMed ID: 20919697 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin-streptavidin system. Jiang X; Chen K; Han H Biosens Bioelectron; 2011 Oct; 28(1):464-8. PubMed ID: 21821408 [TBL] [Abstract][Full Text] [Related]
7. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Gao F; Lei J; Ju H Anal Chem; 2013 Dec; 85(24):11788-93. PubMed ID: 24171654 [TBL] [Abstract][Full Text] [Related]
8. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
9. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. Liu Y; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Zhang H; Harpster MH; Wilson WC; Johnson PA Langmuir; 2012 Feb; 28(8):4030-7. PubMed ID: 22276995 [TBL] [Abstract][Full Text] [Related]
11. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Xu Y; He P; Ahmad W; Hassan MM; Ali S; Li H; Chen Q Biosens Bioelectron; 2022 Aug; 209():114240. PubMed ID: 35447597 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
13. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Chen JW; Liu XP; Feng KJ; Liang Y; Jiang JH; Shen GL; Yu RQ Biosens Bioelectron; 2008 Sep; 24(1):66-71. PubMed ID: 18436440 [TBL] [Abstract][Full Text] [Related]
14. Enzyme-free sensitive SERS biosensor for the detection of thalassemia-associated microRNA-210 using a cascade dual-signal amplification strategy. Chen Q; Chen H; Kong H; Chen R; Gao S; Wang Y; Zhou P; Huang W; Cheng H; Li L; Feng J Anal Chim Acta; 2024 Mar; 1292():342255. PubMed ID: 38309848 [TBL] [Abstract][Full Text] [Related]
15. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum. Xu W; Zhao A; Zuo F; Khan R; Hussain HMJ; Li J Anal Bioanal Chem; 2020 Jul; 412(19):4565-4574. PubMed ID: 32468280 [TBL] [Abstract][Full Text] [Related]
16. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928 [TBL] [Abstract][Full Text] [Related]
17. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641 [TBL] [Abstract][Full Text] [Related]
18. SERS-based direct and sandwich assay methods for mir-21 detection. Guven B; Dudak FC; Boyaci IH; Tamer U; Ozsoz M Analyst; 2014 Mar; 139(5):1141-7. PubMed ID: 24418951 [TBL] [Abstract][Full Text] [Related]
19. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260 [TBL] [Abstract][Full Text] [Related]
20. SERS biosensors based on catalytic hairpin self-assembly and hybridization chain reaction cascade signal amplification strategies for ultrasensitive microRNA-21 detection. Chen Q; Cao J; Kong H; Chen R; Wang Y; Zhou P; Huang W; Cheng H; Li L; Gao S; Feng J Mikrochim Acta; 2024 Jul; 191(8):468. PubMed ID: 39023836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]