BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25000094)

  • 1. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.
    Rydberg P; Lonsdale R; Harvey JN; Mulholland AJ; Olsen L
    J Mol Graph Model; 2014 Jul; 52():30-5. PubMed ID: 25000094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What factors affect the regioselectivity of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction.
    de Visser SP; Ogliaro F; Sharma PK; Shaik S
    J Am Chem Soc; 2002 Oct; 124(39):11809-26. PubMed ID: 12296749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450.
    Kumar D; Tahsini L; de Visser SP; Kang HY; Kim SJ; Nam W
    J Phys Chem A; 2009 Oct; 113(43):11713-22. PubMed ID: 19658379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.
    de Visser SP
    J Phys Chem B; 2007 Oct; 111(42):12299-302. PubMed ID: 17914801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does substrate oxidation determine the regioselectivity of cyclohexene and propene oxidation by cytochrome p450?
    Cohen S; Kozuch S; Hazan C; Shaik S
    J Am Chem Soc; 2006 Aug; 128(34):11028-9. PubMed ID: 16925412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction.
    Jones JP; Mysinger M; Korzekwa KR
    Drug Metab Dispos; 2002 Jan; 30(1):7-12. PubMed ID: 11744605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions.
    Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM
    J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam.
    Lonsdale R; Harvey JN; Mulholland AJ
    J Phys Chem B; 2010 Jan; 114(2):1156-62. PubMed ID: 20014756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.
    Zhang J; Ji L; Liu W
    Chem Res Toxicol; 2015 Aug; 28(8):1522-31. PubMed ID: 26200167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.
    Bathelt CM; Ridder L; Mulholland AJ; Harvey JN
    J Am Chem Soc; 2003 Dec; 125(49):15004-5. PubMed ID: 14653732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biotransformation of isoprene and the two isoprene monoepoxides by human cytochrome P450 enzymes, compared to mouse and rat liver microsomes.
    Bogaards JJ; Venekamp JC; van Bladeren PJ
    Chem Biol Interact; 1996 Dec; 102(3):169-82. PubMed ID: 9021169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic study on the mechanism of aldehyde oxidation to carboxylic acid by cytochrome P450.
    Liu X; Wang Y; Han K
    J Biol Inorg Chem; 2007 Sep; 12(7):1073-81. PubMed ID: 17661096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory.
    Shaik S; de Visser SP; Ogliaro F; Schwarz H; Schröder D
    Curr Opin Chem Biol; 2002 Oct; 6(5):556-67. PubMed ID: 12413538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two states and two more in the mechanisms of hydroxylation and epoxidation by cytochrome P450.
    Hirao H; Kumar D; Thiel W; Shaik S
    J Am Chem Soc; 2005 Sep; 127(37):13007-18. PubMed ID: 16159296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.
    Musaev DG; Basch H; Morokuma K
    J Am Chem Soc; 2002 Apr; 124(15):4135-48. PubMed ID: 11942853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching for the second oxidant in the catalytic cycle of cytochrome P450: a theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways.
    Ogliaro F; de Visser SP; Cohen S; Sharma PK; Shaik S
    J Am Chem Soc; 2002 Mar; 124(11):2806-17. PubMed ID: 11890833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.