These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25000112)
1. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination. Shepard M; Brenner S Int J Occup Environ Health; 2014; 20(3):247-57. PubMed ID: 25000112 [TBL] [Abstract][Full Text] [Related]
2. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Shepard MN; Brenner S Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882 [TBL] [Abstract][Full Text] [Related]
3. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility. Brenner SA; Neu-Baker NM; Eastlake AC; Beaucham CC; Geraci CL J Occup Environ Hyg; 2016 Nov; 13(11):871-80. PubMed ID: 27171535 [TBL] [Abstract][Full Text] [Related]
4. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab. Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG J Occup Environ Hyg; 2016 Sep; 13(9):D138-47. PubMed ID: 27135871 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities. Kreider ML; Cyrs WD; Tosiano MA; Panko JM Ann Occup Hyg; 2015 Nov; 59(9):1122-34. PubMed ID: 26209596 [TBL] [Abstract][Full Text] [Related]
6. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer. Hedmer M; Ludvigsson L; Isaxon C; Nilsson PT; Skaug V; Bohgard M; Pagels JH; Messing ME; Tinnerberg H Ann Occup Hyg; 2015 Aug; 59(7):836-52. PubMed ID: 26122528 [TBL] [Abstract][Full Text] [Related]
7. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry. Choi KM; Kim JH; Park JH; Kim KS; Bae GN J Occup Environ Hyg; 2015; 12(8):D153-60. PubMed ID: 25751663 [TBL] [Abstract][Full Text] [Related]
8. Assessment of airborne nanoparticles present in industry of aluminum surface treatments. Santos RJ; Vieira MT J Occup Environ Hyg; 2017 Mar; 14(3):D29-D36. PubMed ID: 27801631 [TBL] [Abstract][Full Text] [Related]
9. Occupational exposure to graphene and silica nanoparticles. Part I: workplace measurements and samplings. Boccuni F; Ferrante R; Tombolini F; Natale C; Gordiani A; Sabella S; Iavicoli S Nanotoxicology; 2020 Nov; 14(9):1280-1300. PubMed ID: 33125304 [TBL] [Abstract][Full Text] [Related]
10. Exposure monitoring of graphene nanoplatelets manufacturing workplaces. Lee JH; Han JH; Kim JH; Kim B; Bello D; Kim JK; Lee GH; Sohn EK; Lee K; Ahn K; Faustman EM; Yu IJ Inhal Toxicol; 2016; 28(6):281-91. PubMed ID: 27055369 [TBL] [Abstract][Full Text] [Related]
11. Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory. Xing M; Zou H; Gao X; Chang B; Tang S; Zhang M Environ Sci Process Impacts; 2015 Mar; 17(3):656-66. PubMed ID: 25658970 [TBL] [Abstract][Full Text] [Related]
13. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption. Larese Filon F; Bello D; Cherrie JW; Sleeuwenhoek A; Spaan S; Brouwer DH Int J Hyg Environ Health; 2016 Aug; 219(6):536-44. PubMed ID: 27289581 [TBL] [Abstract][Full Text] [Related]
14. A structured observational method to assess dermal exposure to manufactured nanoparticles DREAM as an initial assessment tool. Van Duuren-Stuurman B; Pelzer J; Moehlmann C; Berges M; Bard D; Wake D; Mark D; Jankowska E; Brouwer D Int J Occup Environ Health; 2010; 16(4):399-405. PubMed ID: 21222384 [TBL] [Abstract][Full Text] [Related]
15. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment. Brouwer DH; Spaan S; Roff M; Sleeuwenhoek A; Tuinman I; Goede H; van Duuren-Stuurman B; Filon FL; Bello D; Cherrie JW Int J Hyg Environ Health; 2016 Aug; 219(6):503-12. PubMed ID: 27283207 [TBL] [Abstract][Full Text] [Related]
17. Predicting Occupational Exposures to Carbon Nanotubes and Nanofibers Based on Workplace Determinants Modeling. Dahm MM; Bertke S; Schubauer-Berigan MK Ann Work Expo Health; 2019 Feb; 63(2):158-172. PubMed ID: 30715150 [TBL] [Abstract][Full Text] [Related]
18. Physicochemical Characteristics and Occupational Exposure of Silica Particles as Byproducts in a Semiconductor Sub Fab. Choi KM; Lee SJ Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162814 [TBL] [Abstract][Full Text] [Related]
19. Surface wipe sampling for antineoplastic (chemotherapy) and other hazardous drug residue in healthcare settings: Methodology and recommendations. Connor TH; Zock MD; Snow AH J Occup Environ Hyg; 2016 Sep; 13(9):658-67. PubMed ID: 27019141 [TBL] [Abstract][Full Text] [Related]
20. Exhaled Breath Condensate: A Novel Matrix for Biological Monitoring to Assess Occupational Exposure to Respirable Crystalline Silica. Leese E; Staff JF; Carolan VA; Morton J Ann Work Expo Health; 2017 Aug; 61(7):902-906. PubMed ID: 28810688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]