These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25000330)

  • 1. Polycondensation of polymer brushes via DNA hybridization.
    Lu X; Watts E; Jia F; Tan X; Zhang K
    J Am Chem Soc; 2014 Jul; 136(29):10214-7. PubMed ID: 25000330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 2D Block Copolymer Brushes via a Polymer-Single-Crystal-Assisted-Grafting-to Method.
    Mei S; Wilk JT; Chancellor AJ; Zhao B; Li CY
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000228. PubMed ID: 32608541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-Mediated Step-Growth Polymerization of Bottlebrush Macromonomers.
    Lu X; Fu H; Shih KC; Jia F; Sun Y; Wang D; Wang Y; Ekatan S; Nieh MP; Lin Y; Zhang K
    J Am Chem Soc; 2020 Jun; 142(23):10297-10301. PubMed ID: 32453555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-initiated, ring-opening metathesis polymerization: formation of diblock copolymer brushes and solvent-dependent morphological changes.
    Kong B; Lee JK; Choi IS
    Langmuir; 2007 Jun; 23(12):6761-5. PubMed ID: 17489620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-functionalised blend micelles: mix and fix polymeric hybrid nanostructures.
    Kwak M; Musser AJ; Lee J; Herrmann A
    Chem Commun (Camb); 2010 Jul; 46(27):4935-7. PubMed ID: 20523952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-modified opal nanopores.
    Schepelina O; Zharov I
    Langmuir; 2006 Dec; 22(25):10523-7. PubMed ID: 17129025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface initiated polymerization on pulsed plasma deposited polyallylamine: a polymer substrate-independent strategy to soft surfaces with polymer brushes.
    Yameen B; Khan HU; Knoll W; Förch R; Jonas U
    Macromol Rapid Commun; 2011 Nov; 32(21):1735-40. PubMed ID: 21858892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization.
    Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A
    Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular ABC triblock copolymers via one-pot, orthogonal self-assembly.
    Yang SK; Ambade AV; Weck M
    J Am Chem Soc; 2010 Feb; 132(5):1637-45. PubMed ID: 20078047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise synthesis of poly(macromonomer)s containing sugars by repetitive ROMP and their attachments to poly(ethylene glycol): synthesis, TEM analysis and their properties as amphiphilic block fragments.
    Murphy JJ; Furusho H; Paton RM; Nomura K
    Chemistry; 2007; 13(32):8985-97. PubMed ID: 17668433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of nanostructured materials in inverse miniemulsions and their applications.
    Cao Z; Ziener U
    Nanoscale; 2013 Nov; 5(21):10093-107. PubMed ID: 24056795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution, large-area, serial fabrication of 3D polymer brush structures by parallel dip-pen nanodisplacement lithography.
    Zhou X; Liu Z; Xie Z; Liu X; Zheng Z
    Small; 2012 Dec; 8(23):3568-72. PubMed ID: 22887938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple self-assembled nanostructures from an oligo(p-phenyleneethynylene) containing rod-coil-rod triblock copolymer.
    Li K; Wang Q
    Chem Commun (Camb); 2005 Oct; (38):4786-8. PubMed ID: 16193114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binary Polymer Brushes of Strongly Immiscible Polymers.
    Chu E; Babar T; Bruist MF; Sidorenko A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12505-15. PubMed ID: 25668055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel nanofilms for biomedical applications: synthesis via polycondensation reactions.
    Pippig F; Holländer A
    Macromol Biosci; 2010 Sep; 10(9):1093-105. PubMed ID: 20602415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL).
    Liu X; Li Y; Zheng Z
    Nanoscale; 2010 Dec; 2(12):2614-8. PubMed ID: 20957278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers.
    Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL
    Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-DNA hybrids as electrochemical probes for the detection of DNA.
    Gibbs JM; Park SJ; Anderson DR; Watson KJ; Mirkin CA; Nguyen ST
    J Am Chem Soc; 2005 Feb; 127(4):1170-8. PubMed ID: 15669856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.