BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25000332)

  • 21. Non-cancer risk assessment for nickel compounds: issues associated with dose-response modeling of inhalation and oral exposures.
    Haber LT; Allen BC; Kimmel CA
    Toxicol Sci; 1998 Jun; 43(2):213-29. PubMed ID: 9710963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an occupational exposure limit for n-propylbromide using benchmark dose methods.
    Stelljes ME; Wood RR
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):136-50. PubMed ID: 15450717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing experimental designs for benchmark dose calculations for continuous endpoints.
    Kuljus K; von Rosen D; Sand S; Victorin K
    Risk Anal; 2006 Aug; 26(4):1031-43. PubMed ID: 16948695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation between benchmark dose and no-observed-adverse-effect level in clinical research: effects of daily alcohol intake on blood pressure in Japanese salesmen.
    Dakeishi M; Murata K; Tamura A; Iwata T
    Risk Anal; 2006 Feb; 26(1):115-23. PubMed ID: 16492185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs).
    Bercu JP; Morinello EJ; Sehner C; Shipp BK; Weideman PA
    Regul Toxicol Pharmacol; 2016 Aug; 79 Suppl 1():S48-56. PubMed ID: 27233925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative approaches for assessing dose-response relationships in genetic toxicology studies.
    Gollapudi BB; Johnson GE; Hernandez LG; Pottenger LH; Dearfield KL; Jeffrey AM; Julien E; Kim JH; Lovell DP; Macgregor JT; Moore MM; van Benthem J; White PA; Zeiger E; Thybaud V
    Environ Mol Mutagen; 2013 Jan; 54(1):8-18. PubMed ID: 22987251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Update: use of the benchmark dose approach in risk assessment.
    ; Hardy A; Benford D; Halldorsson T; Jeger MJ; Knutsen KH; More S; Mortensen A; Naegeli H; Noteborn H; Ockleford C; Ricci A; Rychen G; Silano V; Solecki R; Turck D; Aerts M; Bodin L; Davis A; Edler L; Gundert-Remy U; Sand S; Slob W; Bottex B; Abrahantes JC; Marques DC; Kass G; Schlatter JR
    EFSA J; 2017 Jan; 15(1):e04658. PubMed ID: 32625254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?
    Shao K; Gift JS; Setzer RW
    Toxicol Appl Pharmacol; 2013 Nov; 272(3):767-79. PubMed ID: 23954464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of subchronic toxicity data using the benchmark dose approach.
    Gephart LA; Salminen WF; Nicolich MJ; Pelekis M
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):37-59. PubMed ID: 11259178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precision of benchmark dose estimates for continuous (nonquantal) measurements of toxic effects.
    Gaylor DW; Chen JJ
    Regul Toxicol Pharmacol; 1996 Aug; 24(1 Pt 1):19-23. PubMed ID: 8921542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A procedure for developing risk-based reference doses.
    Gaylor DW; Kodell RL
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):137-41. PubMed ID: 12051999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guidance on the use of the benchmark dose approach in risk assessment.
    ; More SJ; Bampidis V; Benford D; Bragard C; Halldorsson TI; Hernández-Jerez AF; Bennekou SH; Koutsoumanis K; Lambré C; Machera K; Mennes W; Mullins E; Nielsen SS; Schrenk D; Turck D; Younes M; Aerts M; Edler L; Sand S; Wright M; Binaglia M; Bottex B; Abrahantes JC; Schlatter J
    EFSA J; 2022 Oct; 20(10):e07584. PubMed ID: 36304832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmark dose modelling in regulatory ecotoxicology, a potential tool in pest management.
    Jensen SM; Kluxen FM; Ritz C
    Pest Manag Sci; 2022 May; 78(5):1772-1779. PubMed ID: 34908226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of ratio distributions based on the NOAEL and the benchmark approach for subchronic-to-chronic extrapolation.
    Bokkers BG; Slob W
    Toxicol Sci; 2005 Jun; 85(2):1033-40. PubMed ID: 15772368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchmark dose analysis of developmental toxicity in rats exposed to boric acid.
    Allen BC; Strong PL; Price CJ; Hubbard SA; Daston GP
    Fundam Appl Toxicol; 1996 Aug; 32(2):194-204. PubMed ID: 8921322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of benchmark dose models in risk assessment for occupational handlers of eight pesticides used in pome fruit production.
    Pouzou JG; Kissel J; Yost MG; Fenske RA; Cullen AC
    Regul Toxicol Pharmacol; 2020 Feb; 110():104504. PubMed ID: 31655092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the benchmark dose in a regulatory context.
    Travis KZ; Pate I; Welsh ZK
    Regul Toxicol Pharmacol; 2005 Dec; 43(3):280-91. PubMed ID: 16143439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing dose-response: I: Critical assessment of the benchmark dose concept.
    Murrell JA; Portier CJ; Morris RW
    Risk Anal; 1998 Feb; 18(1):13-26. PubMed ID: 9523441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benchmark dose-response analyses for multiple endpoints in drug safety evaluation.
    Vieira Silva A; Ringblom J; Moldeus P; Törnqvist E; Öberg M
    Toxicol Appl Pharmacol; 2021 Dec; 433():115732. PubMed ID: 34606779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.