These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25000332)

  • 41. Calculation of benchmark doses from teratology data.
    Auton TR
    Regul Toxicol Pharmacol; 1994 Apr; 19(2):152-67. PubMed ID: 8041913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations.
    Wills JW; Johnson GE; Doak SH; Soeteman-Hernández LG; Slob W; White PA
    Mutagenesis; 2016 May; 31(3):255-63. PubMed ID: 26687511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Health assessment of phosgene: approaches for derivation of reference concentration.
    Gift JS; McGaughy R; Singh DV; Sonawane B
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):98-107. PubMed ID: 18440110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Web-Based System for Bayesian Benchmark Dose Estimation.
    Shao K; Shapiro AJ
    Environ Health Perspect; 2018 Jan; 126(1):017002. PubMed ID: 29329100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The benchmark dose approach in food risk assessment: is it applicable and worthwhile?
    Muri SD; Schlatter JR; Brüschweiler BJ
    Food Chem Toxicol; 2009 Dec; 47(12):2906-25. PubMed ID: 19682530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation research.
    Stainforth R; Vuong N; Adam N; Kuo B; Wilkins RC; Yauk C; Beheshti A; Chauhan V
    Int J Radiat Biol; 2022; 98(12):1832-1844. PubMed ID: 35939275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of benchmark dose uncertainty measurements for robust comparative potency analyses.
    Wheeldon RP; Dertinger SD; Bryce SM; Bemis JC; Johnson GE
    Environ Mol Mutagen; 2021 Mar; 62(3):203-215. PubMed ID: 33428310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of three methods for integrating historical information for Bayesian model averaged benchmark dose estimation.
    Shao K
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):288-296. PubMed ID: 22647377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Benchmark dose (BMD) modeling: current practice, issues, and challenges.
    Haber LT; Dourson ML; Allen BC; Hertzberg RC; Parker A; Vincent MJ; Maier A; Boobis AR
    Crit Rev Toxicol; 2018 May; 48(5):387-415. PubMed ID: 29516780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD).
    Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL
    PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toxicity value for 3-monochloropropane-1,2-diol using a benchmark dose methodology.
    Hwang M; Yoon E; Kim J; Jang DD; Yoo TM
    Regul Toxicol Pharmacol; 2009 Mar; 53(2):102-6. PubMed ID: 19133308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a benchmark dose for lead-exposure based on its induction of micronuclei, telomere length changes and hematological toxicity.
    Wang T; Tu Y; Zhang G; Gong S; Wang K; Zhang Y; Meng Y; Wang T; Li A; Christiani DC; Au W; Zhu Y; Xia ZL
    Environ Int; 2020 Dec; 145():106129. PubMed ID: 32950787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Application of the Benchmark Dose Method to the Incidence Data for Various Pathological Findings and Its Validation Analysis].
    Inoue K; Shigeta Y; Umemura T; Nishiura H; Hirose A
    Shokuhin Eiseigaku Zasshi; 2021; 62(2):56-64. PubMed ID: 33883337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A signal-to-noise crossover dose as the point of departure for health risk assessment.
    Sand S; Portier CJ; Krewski D
    Environ Health Perspect; 2011 Dec; 119(12):1766-74. PubMed ID: 21813365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Application of the benchmark dose approach to epidemiological endpoints with clinical standards].
    Murata K; Karita K; Horiguchi H; Iwata T; Hirose A
    Sangyo Eiseigaku Zasshi; 2011; 53(3):67-77. PubMed ID: 21467775
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration.
    Willhite CC; Ball GL; McLellan CJ
    J Toxicol Environ Health B Crit Rev; 2008 Feb; 11(2):69-146. PubMed ID: 18188738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantalization of continuous data for benchmark dose estimation.
    Gaylor DW
    Regul Toxicol Pharmacol; 1996 Dec; 24(3):246-50. PubMed ID: 8975754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A probabilistic framework for non-cancer risk assessment.
    Chen JJ; Moon H; Kodell RL
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):45-50. PubMed ID: 17166641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Calculation of the combined renal dysfunction risk in patients co-exposed to arsenicum and cadmium by using benchmark dose method].
    Hong F; Jin TY; Zhang AH
    Zhonghua Yu Fang Yi Xue Za Zhi; 2004 Nov; 38(6):374-8. PubMed ID: 15569507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.