These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25000342)

  • 1. Sulfonyl chlorides as an efficient tool for the postsynthetic modification of Cr-MIL-101-SO3H and CAU-1-NH2.
    Klinkebiel A; Reimer N; Lammert M; Stock N; Lüning U
    Chem Commun (Camb); 2014 Aug; 50(66):9306-8. PubMed ID: 25000342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation.
    Lammert M; Bernt S; Vermoortele F; De Vos DE; Stock N
    Inorg Chem; 2013 Aug; 52(15):8521-8. PubMed ID: 23829498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks.
    Cheng X; Liu M; Zhang A; Hu S; Song C; Zhang G; Guo X
    Nanoscale; 2015 Jun; 7(21):9738-45. PubMed ID: 25963664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides.
    Wang Y; Wang J; Gao M; Zhang X
    Proteomics; 2017 May; 17(10):e1700005. PubMed ID: 28390088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Postsynthetic Modified MOF Hybrid as Heterogeneous Photocatalyst for α-Phenethyl Alcohol and Reusable Fluorescence Sensor.
    Lian X; Yan B
    Inorg Chem; 2016 Nov; 55(22):11831-11838. PubMed ID: 27934307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols.
    Herbst A; Khutia A; Janiak C
    Inorg Chem; 2014 Jul; 53(14):7319-33. PubMed ID: 25006999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating Chemisorption Sites for Enhanced CO
    Xie Y; Fang Z; Li L; Yang H; Liu TF
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27017-27023. PubMed ID: 31276357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SuFEx in Metal-Organic Frameworks: Versatile Postsynthetic Modification Tool.
    Park S; Song H; Ko N; Kim C; Kim K; Lee E
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33785-33789. PubMed ID: 30230813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification.
    Xi FG; Liu H; Yang NN; Gao EQ
    Inorg Chem; 2016 May; 55(10):4701-3. PubMed ID: 27136395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A postsynthetically modified MOF hybrid as a ratiometric fluorescent sensor for anion recognition and detection.
    Lian X; Yan B
    Dalton Trans; 2016 Nov; 45(46):18668-18675. PubMed ID: 27830222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynthetic Modification of Amine-Functionalized MIL-101(Cr) Metal-Organic Frameworks with an EDTA-Zn(II) Complex as an Effective Heterogeneous Catalyst for Hantzsch Synthesis of Polyhydroquinolines.
    Nikseresht A; Ghoochi F; Mohammadi M
    ACS Omega; 2024 Jul; 9(26):28114-28128. PubMed ID: 38973916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynthetic ligand and cation exchange in robust metal-organic frameworks.
    Kim M; Cahill JF; Fei H; Prather KA; Cohen SM
    J Am Chem Soc; 2012 Oct; 134(43):18082-8. PubMed ID: 23039827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics.
    Reinsch H; Waitschat S; Stock N
    Dalton Trans; 2013 Apr; 42(14):4840-7. PubMed ID: 23364216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).
    Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z
    Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions.
    Li B; Leng K; Zhang Y; Dynes JJ; Wang J; Hu Y; Ma D; Shi Z; Zhu L; Zhang D; Sun Y; Chrzanowski M; Ma S
    J Am Chem Soc; 2015 Apr; 137(12):4243-8. PubMed ID: 25773275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification.
    Modrow A; Zargarani D; Herges R; Stock N
    Dalton Trans; 2012 Jul; 41(28):8690-6. PubMed ID: 22692132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature.
    Hamon L; Serre C; Devic T; Loiseau T; Millange F; Férey G; De Weireld G
    J Am Chem Soc; 2009 Jul; 131(25):8775-7. PubMed ID: 19505146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.