BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25000358)

  • 1. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa.
    Mortimer M; Gogos A; Bartolomé N; Kahru A; Bucheli TD; Slaveykova VI
    Environ Sci Technol; 2014; 48(15):8760-7. PubMed ID: 25000358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila.
    Mortimer M; Kahru A; Slaveykova VI
    Environ Pollut; 2014 Jul; 190():58-64. PubMed ID: 24727587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of hyperspectral classification methods for the analysis of cerium oxide nanoparticles in histological and aqueous samples.
    Idelchik MPS; Dillon J; Abariute L; Guttenberg MA; Segarceanu A; Neu-Baker NM; Brenner SA
    J Microsc; 2018 Jul; 271(1):69-83. PubMed ID: 29630741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila.
    Juganson K; Mortimer M; Ivask A; Kasemets K; Kahru A
    Environ Sci Process Impacts; 2013 Jan; 15(1):244-50. PubMed ID: 24592441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral data influenced by sample matrix: the importance of building relevant reference spectral libraries to map materials of interest.
    Dillon JCK; Bezerra L; Del Pilar Sosa Peña M; Neu-Baker NM; Brenner SA
    Microsc Res Tech; 2017 May; 80(5):462-470. PubMed ID: 28139043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila.
    Yang WW; Wang Y; Huang B; Wang NX; Wei ZB; Luo J; Miao AJ; Yang LY
    Environ Sci Technol; 2014 Jul; 48(13):7568-75. PubMed ID: 24912115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of enhanced darkfield microscopy and hyperspectral imaging for rapid screening of TiO
    Neu-Baker NM; Dozier AK; Eastlake AC; Brenner SA
    Microsc Res Tech; 2021 Dec; 84(12):2968-2976. PubMed ID: 34263501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells.
    Patskovsky S; Bergeron E; Meunier M
    J Biophotonics; 2015 Jan; 8(1-2):162-7. PubMed ID: 24343875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS.
    Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H
    Chemosphere; 2018 Mar; 195():531-541. PubMed ID: 29277033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.
    Nam SH; Kim SW; An YJ
    J Appl Toxicol; 2013 Oct; 33(10):1061-9. PubMed ID: 23161381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Metal Oxide Nanoparticles in Histological Samples by Enhanced Darkfield Microscopy and Hyperspectral Mapping.
    Roth GA; Sosa Peña Mdel P; Neu-Baker NM; Tahiliani S; Brenner SA
    J Vis Exp; 2015 Dec; (106):e53317. PubMed ID: 26709947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment.
    Pavagadhi S; Sathishkumar M; Balasubramanian R
    Water Res; 2014 May; 55():280-91. PubMed ID: 24631877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analyses of early response of unicellular eukaryotic microorganism Tetrahymena thermophila exposed to TiO₂ particles.
    Rajapakse K; Drobne D; Kastelec D; Kogej K; Makovec D; Gallampois C; Amelina H; Danielsson G; Fanedl L; Marinsek-Logar R; Cristobal S
    Nanotoxicology; 2016; 10(5):542-56. PubMed ID: 26524663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A label-free technique to quantify and visualize gold nanoparticle accumulation at the single-cell level.
    Wang C; Zhou HR; Zhao YT; Xiang ZQ; Pan K; Yang L; Miao AJ
    Chemosphere; 2022 Sep; 302():134857. PubMed ID: 35561767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila.
    Mortimer M; Kasemets K; Kahru A
    Toxicology; 2010 Mar; 269(2-3):182-9. PubMed ID: 19622384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy.
    Guttenberg M; Bezerra L; Neu-Baker NM; Del Pilar Sosa Idelchik M; Elder A; Oberdörster G; Brenner SA
    J Biophotonics; 2016 Oct; 9(10):987-993. PubMed ID: 27528427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update.
    Panzarini E; Mariano S; Carata E; Mura F; Rossi M; Dini L
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29702561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.