These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25000389)

  • 21. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli.
    Lloyd JA; Ng SH; Liu AC; Zhu Y; Chao W; Coenen T; Etheridge J; Gómez DE; Bach U
    ACS Nano; 2017 Feb; 11(2):1604-1612. PubMed ID: 28165711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap.
    Ye J; Van Dorpe P
    Nanoscale; 2012 Nov; 4(22):7205-11. PubMed ID: 23073071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observation of quantum tunneling between two plasmonic nanoparticles.
    Scholl JA; García-Etxarri A; Koh AL; Dionne JA
    Nano Lett; 2013 Feb; 13(2):564-9. PubMed ID: 23245286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic waveguide modes of film-coupled metallic nanocubes.
    Lassiter JB; McGuire F; Mock JJ; Ciracì C; Hill RT; Wiley BJ; Chilkoti A; Smith DR
    Nano Lett; 2013; 13(12):5866-72. PubMed ID: 24199752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of Gold Nanoparticle Coupling with a 2D Plasmonic Crystal at High Incidence Angles.
    Lu M; Hong L; Liang Y; Charron B; Zhu H; Peng W; Masson JF
    Anal Chem; 2018 Jun; 90(11):6683-6692. PubMed ID: 29738232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts.
    Zhang C; Zhao H; Zhou L; Schlather AE; Dong L; McClain MJ; Swearer DF; Nordlander P; Halas NJ
    Nano Lett; 2016 Oct; 16(10):6677-6682. PubMed ID: 27676189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles.
    Wang W; Christensen T; Jauho AP; Thygesen KS; Wubs M; Mortensen NA
    Sci Rep; 2015 Apr; 5():9535. PubMed ID: 25856506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlated optical measurements and plasmon mapping of silver nanorods.
    Guiton BS; Iberi V; Li S; Leonard DN; Parish CM; Kotula PG; Varela M; Schatz GC; Pennycook SJ; Camden JP
    Nano Lett; 2011 Aug; 11(8):3482-8. PubMed ID: 21732618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles.
    de la Mata M; Catalán-Gómez S; Nucciarelli F; Pau JL; Molina SI
    Small; 2019 Oct; 15(43):e1902920. PubMed ID: 31496053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect.
    Starowicz Z; Wojnarowska-Nowak R; Ozga P; Sheregii EM
    Colloid Polym Sci; 2018; 296(6):1029-1037. PubMed ID: 29780199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays.
    Milekhin IA; Anikin KV; Rahaman M; Rodyakina EE; Duda TA; Saidzhonov BM; Vasiliev RB; Dzhagan VM; Milekhin AG; Batsanov SA; Gutakovskii AK; Latyshev AV; Zahn DRT
    J Chem Phys; 2020 Oct; 153(16):164708. PubMed ID: 33138402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Edge Mode Coupling within a Plasmonic Nanoparticle.
    Schmidt FP; Ditlbacher H; Hohenau A; Hohenester U; Hofer F; Krenn JR
    Nano Lett; 2016 Aug; 16(8):5152-5. PubMed ID: 27427962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.
    Wu Y; Li G; Camden JP
    Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.