These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 25000577)

  • 1. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.
    Lawniczak AE; Zbierska J; Nowak B; Achtenberg K; Grześkowiak A; Kanas K
    Environ Monit Assess; 2016 Mar; 188(3):172. PubMed ID: 26887311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of land use on phosphorus and identification of phosphate sources in groundwater and surface water of karst watersheds.
    Chen H; Han Z; Yan X; Bai Z; Li Q; Wu P
    J Environ Manage; 2024 Aug; 366():121919. PubMed ID: 39033625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach to identify priority areas for optimal nutrient management in mixed land-use watersheds through nutrient budget assessment.
    Kim DW; Chung EG; Na EH; Kim Y
    J Environ Manage; 2024 Apr; 357():120645. PubMed ID: 38579463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality.
    Laudon H; Kuglerová L; Sponseller RA; Futter M; Nordin A; Bishop K; Lundmark T; Egnell G; Ågren AM
    Ambio; 2016 Feb; 45 Suppl 2(Suppl 2):152-62. PubMed ID: 26744050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theory of geo-social marginalization: A case study of the licensed cannabis industry in California.
    Dillis C; Petersen-Rockney M; Polson M
    J Environ Manage; 2024 Mar; 355():120396. PubMed ID: 38430877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of emerging and persistent contaminants in an anthropogenic-impacted watershed: Application using targeted, non-targeted, and in vitro bioassay techniques.
    Lee THY; Li C; Dos Santos MM; Tan SY; Sureshkumar M; Srinuansom K; Ziegler AD; Snyder SA
    Chemosphere; 2024 Aug; 364():143067. PubMed ID: 39128775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly spatial and temporal bottom-up vehicle emission characterization and its control in a typical ecology-preservation area.
    Bie P; Deng F; Chen B; Wang L; Yang F; Zhou J; Liu H; He K
    Eco Environ Health; 2022 Sep; 1(3):156-164. PubMed ID: 38075598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land Use Conflict Identification Coupled with Ecological Protection Priority in Jinan City, China.
    Dong G; Wang J; Zhang W; Liu Z; Wang K; Cheng W
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of land use at multiple buffer scales on seasonal water quality in a reticular river network area.
    Zhang Z; Zhang F; Du J; Chen D; Zhang W
    PLoS One; 2021; 16(1):e0244606. PubMed ID: 33406090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland.
    Matej-Lukowicz K; Wojciechowska E; Nawrot N; Dzierzbicka-Głowacka LA
    PeerJ; 2020; 8():e8381. PubMed ID: 32071800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas.
    Cardoso de Salis HH; Monteiro da Costa A; Moreira Vianna JH; Azeneth Schuler M; Künne A; Sanches Fernandes LF; Leal Pacheco FA
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31315302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities.
    Soares S; Terêncio D; Fernandes L; Machado J; Pacheco FAL
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30965551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.
    Chen X; Zhou W; Pickett ST; Li W; Han L
    Int J Environ Res Public Health; 2016 Apr; 13(5):. PubMed ID: 27128934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.
    Sadat-Noori M; Ebrahimi K
    Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater quality in rural watersheds with environmental land use conflicts.
    Valle Junior RF; Varandas SG; Sanches Fernandes LF; Pacheco FA
    Sci Total Environ; 2014 Sep; 493():812-27. PubMed ID: 25000577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil losses in rural watersheds with environmental land use conflicts.
    Pacheco FAL; Varandas SGP; Sanches Fernandes LF; Valle Junior RF
    Sci Total Environ; 2014 Jul; 485-486():110-120. PubMed ID: 24704962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water.
    Pacheco FAL; Sanches Fernandes LF
    Sci Total Environ; 2016 Apr; 548-549():173-188. PubMed ID: 26802346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers.
    Koh DC; Mayer B; Lee KS; Ko KS
    J Contam Hydrol; 2010 Oct; 118(1-2):62-78. PubMed ID: 20828864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.
    Bartley R; Speirs WJ; Ellis TW; Waters DK
    Mar Pollut Bull; 2012; 65(4-9):101-16. PubMed ID: 21889170
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.