BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25000582)

  • 1. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil-plant transfer models.
    Boshoff M; De Jonge M; Scheifler R; Bervoets L
    Sci Total Environ; 2014 Sep; 493():862-71. PubMed ID: 25000582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient.
    Notten MJ; Oosthoek AJ; Rozema J; Aerts R
    Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of heavy metals from soil in medicinal plants.
    Glavač NK; Djogo S; Ražić S; Kreft S; Veber M
    Arh Hig Rada Toksikol; 2017 Sep; 68(3):236-244. PubMed ID: 28976884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation and distribution of Pb, Ni, Zn and Fe in stinging nettle (
    Sahiti H; Bislimi K; Abdurrahmani Gagica N; Bajra Brahimaj T; Dalo E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(9):805-810. PubMed ID: 37463563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia.
    Zarcinas BA; Ishak CF; McLaughlin MJ; Cozens G
    Environ Geochem Health; 2004 Dec; 26(4):343-57. PubMed ID: 15719158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.
    Gjorgieva D; Kadifkova-Panovska T; Bačeva K; Stafilov T
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):233-40. PubMed ID: 20508923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of vineyard abandonment and natural recolonization on metal content and availability in Mediterranean soils.
    de Santiago-Martín A; Vaquero-Perea C; Valverde-Asenjo I; Quintana Nieto JR; González-Huecas C; Lafuente AL; Vázquez de la Cueva A
    Sci Total Environ; 2016 May; 551-552():57-65. PubMed ID: 26874761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels and variability of metals in soils of the province of Golestan (Iran).
    Mirzaei R; Esmaili-Sari A; Hemami MR; Rezaei HR; Rodríguez Martín JA
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):617-29. PubMed ID: 24889056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E; Fernández Marcos ML; Vaamonde C; Fernández-Sanjurjo MJ
    Sci Total Environ; 2003 Sep; 313(1-3):185-97. PubMed ID: 12922070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.
    Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC
    Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants.
    García-Delgado M; Rodríguez-Cruz MS; Lorenzo LF; Arienzo M; Sánchez-Martín MJ
    Sci Total Environ; 2007 Aug; 382(1):82-92. PubMed ID: 17532025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun.
    Bausinger T; Bonnaire E; Preuss J
    Sci Total Environ; 2007 Sep; 382(2-3):259-71. PubMed ID: 17555801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food-chain transfer of cadmium and zinc from contaminated Urtica dioica to Helix aspersa and Lumbricus terrestris.
    Sinnett DE; Hodson ME; Hutchings TR
    Environ Toxicol Chem; 2009 Aug; 28(8):1756-66. PubMed ID: 19292567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter.
    Viktorova J; Jandova Z; Madlenakova M; Prouzova P; Bartunek V; Vrchotova B; Lovecka P; Musilova L; Macek T
    PLoS One; 2016; 11(12):e0167927. PubMed ID: 27930707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.