These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25000952)

  • 1. Reproducibility and responsiveness of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries.
    Neto FR; Coutinho AC; Beraldo PS
    Spinal Cord; 2014 Sep; 52(9):683-8. PubMed ID: 25000952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries.
    Coutinho AC; Neto FR; Beraldo PS
    Spinal Cord; 2014 Sep; 52(9):677-82. PubMed ID: 25000953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assessment of walking capacity using the walking index for spinal cord injury: self-selected versus maximal levels.
    Kim MO; Burns AS; Ditunno JF; Marino RJ
    Arch Phys Med Rehabil; 2007 Jun; 88(6):762-7. PubMed ID: 17532899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.
    Karimi MT
    Work; 2015; 51(4):799-805. PubMed ID: 24594537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method of using heart rate to represent energy expenditure: the Total Heart Beat Index.
    Hood VL; Granat MH; Maxwell DJ; Hasler JP
    Arch Phys Med Rehabil; 2002 Sep; 83(9):1266-73. PubMed ID: 12235607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury.
    Guillon B; Van-Hecke G; Iddir J; Pellegrini N; Beghoul N; Vaugier I; Figère M; Pradon D; Lofaso F
    Arch Phys Med Rehabil; 2015 May; 96(5):894-904. PubMed ID: 25620717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients.
    Coutinho AC; Neto FR; Perna CE
    Spinal Cord; 2013 Oct; 51(10):755-60. PubMed ID: 24042996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability and validity of perceived self-efficacy in wheeled mobility scale among elite wheelchair-dependent athletes with a spinal cord injury.
    Fliess-Douer O; Vanlandewijck YC; van der Woude LH
    Disabil Rehabil; 2013 May; 35(10):851-9. PubMed ID: 22931383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The timed manual wheelchair slalom test: a reliable and accurate performance-based outcome measure for individuals with spinal cord injury.
    Gagnon D; Décary S; Charbonneau MF
    Arch Phys Med Rehabil; 2011 Aug; 92(8):1339-43. PubMed ID: 21704977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring energy expenditure using heart rate to assess the effects of wheelchair tyre pressure.
    Sawatzky BJ; Miller WC; Denison I
    Clin Rehabil; 2005 Mar; 19(2):182-7. PubMed ID: 15759533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SF-36 walk-wheel: a simple modification of the SF-36 physical domain improves its responsiveness for measuring health status change in spinal cord injury.
    Lee BB; Simpson JM; King MT; Haran MJ; Marial O
    Spinal Cord; 2009 Jan; 47(1):50-5. PubMed ID: 18560375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of the QT-variability index in individuals with spinal cord injury.
    Sharif H; Allison D; O'Leary D; Ditor D
    Auton Neurosci; 2016 Feb; 195():16-9. PubMed ID: 26899242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of spinergy versus standard steel-spoke wheelchair wheels.
    Hughes B; Sawatzky BJ; Hol AT
    Arch Phys Med Rehabil; 2005 Mar; 86(3):596-601. PubMed ID: 15759252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement properties of the wheelchair outcome measure in individuals with spinal cord injury.
    Miller WC; Garden J; Mortenson WB
    Spinal Cord; 2011 Sep; 49(9):995-1000. PubMed ID: 21577219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five additional mobility and locomotor items to improve responsiveness of the FIM in wheelchair-dependent individuals with spinal cord injury.
    Middleton JW; Harvey LA; Batty J; Cameron I; Quirk R; Winstanley J
    Spinal Cord; 2006 Aug; 44(8):495-504. PubMed ID: 16331309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The experience of using the scale of functional independence measure in individuals undergoing spinal cord injury rehabilitation in Brazil.
    Barbetta DC; Cassemiro LC; Assis MR
    Spinal Cord; 2014 Apr; 52(4):276-81. PubMed ID: 24492639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking functional status across the spinal cord injury lifespan: linking pediatric and adult patient-reported outcome scores.
    Tian F; Ni P; Mulcahey MJ; Hambleton RK; Tulsky D; Haley SM; Jette AM
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2078-2085.e15. PubMed ID: 24933214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.