These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25000953)

  • 1. Validity of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries.
    Coutinho AC; Neto FR; Beraldo PS
    Spinal Cord; 2014 Sep; 52(9):677-82. PubMed ID: 25000953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility and responsiveness of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries.
    Neto FR; Coutinho AC; Beraldo PS
    Spinal Cord; 2014 Sep; 52(9):683-8. PubMed ID: 25000952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Cost of Lower Body Dressing, Pop-Over Transfers, and Manual Wheelchair Propulsion in People with Paraplegia Due to Motor-Complete Spinal Cord Injury.
    Lynch MM; McCormick Z; Liem B; Jacobs G; Hwang P; Hornby TG; Rydberg L; Roth EJ
    Top Spinal Cord Inj Rehabil; 2015; 21(2):140-8. PubMed ID: 26364283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method of using heart rate to represent energy expenditure: the Total Heart Beat Index.
    Hood VL; Granat MH; Maxwell DJ; Hasler JP
    Arch Phys Med Rehabil; 2002 Sep; 83(9):1266-73. PubMed ID: 12235607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The assessment of walking capacity using the walking index for spinal cord injury: self-selected versus maximal levels.
    Kim MO; Burns AS; Ditunno JF; Marino RJ
    Arch Phys Med Rehabil; 2007 Jun; 88(6):762-7. PubMed ID: 17532899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.
    Karimi MT
    Work; 2015; 51(4):799-805. PubMed ID: 24594537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring energy expenditure using heart rate to assess the effects of wheelchair tyre pressure.
    Sawatzky BJ; Miller WC; Denison I
    Clin Rehabil; 2005 Mar; 19(2):182-7. PubMed ID: 15759533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients.
    Coutinho AC; Neto FR; Perna CE
    Spinal Cord; 2013 Oct; 51(10):755-60. PubMed ID: 24042996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury.
    Guillon B; Van-Hecke G; Iddir J; Pellegrini N; Beghoul N; Vaugier I; Figère M; Pradon D; Lofaso F
    Arch Phys Med Rehabil; 2015 May; 96(5):894-904. PubMed ID: 25620717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue in persons with subacute spinal cord injury who are dependent on a manual wheelchair.
    Nooijen CF; Vogels S; Bongers-Janssen HM; Bergen MP; Stam HJ; van den Berg-Emons HJ;
    Spinal Cord; 2015 Oct; 53(10):758-62. PubMed ID: 25896345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and validity of perceived self-efficacy in wheeled mobility scale among elite wheelchair-dependent athletes with a spinal cord injury.
    Fliess-Douer O; Vanlandewijck YC; van der Woude LH
    Disabil Rehabil; 2013 May; 35(10):851-9. PubMed ID: 22931383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The longitudinal relation between physical capacity and wheelchair skill performance during inpatient rehabilitation of people with spinal cord injury.
    Kilkens OJ; Dallmeijer AJ; Nene AV; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1575-81. PubMed ID: 16084810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation.
    van der Woude LH; Bouw A; van Wegen J; van As H; Veeger D; de Groot S
    J Rehabil Med; 2009 Feb; 41(3):143-9. PubMed ID: 19229446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal physiological responses during arm cranking and treadmill wheelchair propulsion in T4-T6 paraplegic men.
    Gass EM; Harvey LA; Gass GC
    Paraplegia; 1995 May; 33(5):267-70. PubMed ID: 7630652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.