These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25000956)

  • 41. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL.
    Koike-Takeshita A; Mitsuoka K; Taguchi H
    J Biol Chem; 2014 Oct; 289(43):30005-11. PubMed ID: 25202010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural changes in GroEL effected by binding a denatured protein substrate.
    Falke S; Fisher MT; Gogol EP
    J Mol Biol; 2001 May; 308(4):569-77. PubMed ID: 11350160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy.
    Roseman AM; Ranson NA; Gowen B; Fuller SD; Saibil HR
    J Struct Biol; 2001 Aug; 135(2):115-25. PubMed ID: 11580261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL.
    Yang Z; Májek P; Bahar I
    PLoS Comput Biol; 2009 Apr; 5(4):e1000360. PubMed ID: 19381265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites.
    Leffers KW; Schell J; Jansen K; Lucassen R; Kaimann T; Nagel-Steger L; Tatzelt J; Riesner D
    J Mol Biol; 2004 Nov; 344(3):839-53. PubMed ID: 15533449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.
    Fukui N; Araki K; Hongo K; Mizobata T; Kawata Y
    J Biol Chem; 2016 Nov; 291(48):25217-25226. PubMed ID: 27742838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GroEL Ring Separation and Exchange in the Chaperonin Reaction.
    Yan X; Shi Q; Bracher A; Miličić G; Singh AK; Hartl FU; Hayer-Hartl M
    Cell; 2018 Jan; 172(3):605-617.e11. PubMed ID: 29336887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding.
    Hayer-Hartl M; Bracher A; Hartl FU
    Trends Biochem Sci; 2016 Jan; 41(1):62-76. PubMed ID: 26422689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unfolding and disassembly of the chaperonin GroEL occurs via a tetradecameric intermediate with a folded equatorial domain.
    Chen J; Smith DL
    Biochemistry; 2000 Apr; 39(15):4250-8. PubMed ID: 10757973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity.
    Kanno R; Koike-Takeshita A; Yokoyama K; Taguchi H; Mitsuoka K
    Structure; 2009 Feb; 17(2):287-93. PubMed ID: 19217399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering.
    Thiyagarajan P; Henderson SJ; Joachimiak A
    Structure; 1996 Jan; 4(1):79-88. PubMed ID: 8805508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATP-bound states of GroEL captured by cryo-electron microscopy.
    Ranson NA; Farr GW; Roseman AM; Gowen B; Fenton WA; Horwich AL; Saibil HR
    Cell; 2001 Dec; 107(7):869-79. PubMed ID: 11779463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GroEL and the GroEL-GroES Complex.
    Ishii N
    Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of C-terminal Truncation of Chaperonin GroEL on the Yield of In-cage Folding of the Green Fluorescent Protein.
    Ishino S; Kawata Y; Taguchi H; Kajimura N; Matsuzaki K; Hoshino M
    J Biol Chem; 2015 Jun; 290(24):15042-51. PubMed ID: 25887400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Limited Trypsinolysis of GroES: The Effect on the Interaction with GroEL and Assembly In Vitro].
    Marchenkov VV; Kotova NV; Muranova TA; Semisotnov GV
    Mol Biol (Mosk); 2018; 52(1):82-87. PubMed ID: 29512639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Domain motions in GroEL upon binding of an oligopeptide.
    Wang J; Chen L
    J Mol Biol; 2003 Nov; 334(3):489-99. PubMed ID: 14623189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy.
    Nishida N; Motojima F; Idota M; Fujikawa H; Yoshida M; Shimada I; Kato K
    J Biochem; 2006 Oct; 140(4):591-8. PubMed ID: 16963786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of substrate binding site of GroEL minichaperone in solution.
    Tanaka N; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):173-80. PubMed ID: 10493866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution.
    Wang J; Boisvert DC
    J Mol Biol; 2003 Apr; 327(4):843-55. PubMed ID: 12654267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.