These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25000988)

  • 1. Better physical activity classification using smartphone acceleration sensor.
    Arif M; Bilal M; Kattan A; Ahamed SI
    J Med Syst; 2014 Sep; 38(9):95. PubMed ID: 25000988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying typical physical activity on smartphone with varying positions and orientations.
    Miao F; He Y; Liu J; Li Y; Ayoola I
    Biomed Eng Online; 2015 Apr; 14():32. PubMed ID: 25889811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification accuracies of physical activities using smartphone motion sensors.
    Wu W; Dasgupta S; Ramirez EE; Peterson C; Norman GJ
    J Med Internet Res; 2012 Oct; 14(5):e130. PubMed ID: 23041431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of physical activities in overweight Hispanic youth using KNOWME Networks.
    Emken BA; Li M; Thatte G; Lee S; Annavaram M; Mitra U; Narayanan S; Spruijt-Metz D
    J Phys Act Health; 2012 Mar; 9(3):432-41. PubMed ID: 21934162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an automated physical activity classification application for mobile phones.
    Xia Y; Cheung V; Garcia E; Ding H; Karunaithi M
    Stud Health Technol Inform; 2011; 168():188-94. PubMed ID: 21893928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change-of-state determination to recognize mobility activities using a BlackBerry smartphone.
    Wu HH; Lemaire ED; Baddour N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5252-5. PubMed ID: 22255522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of smartphone applications and wearable devices for tracking physical activity data.
    Case MA; Burwick HA; Volpp KG; Patel MS
    JAMA; 2015 Feb; 313(6):625-6. PubMed ID: 25668268
    [No Abstract]   [Full Text] [Related]  

  • 12. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M; Majkowski A; Tarnowski P; Rak RJ; Gebert D; Sawicki D
    J Healthc Eng; 2019; 2019():9497151. PubMed ID: 30944719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lightweight hierarchical activity recognition framework using smartphone sensors.
    Han M; Bang JH; Nugent C; McClean S; Lee S
    Sensors (Basel); 2014 Sep; 14(9):16181-95. PubMed ID: 25184486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone.
    Masud MT; Mamun MA; Thapa K; Lee DH; Griffiths MD; Yang SH
    J Biomed Inform; 2020 Mar; 103():103371. PubMed ID: 31935462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand, belt, pocket or bag: Practical activity tracking with mobile phones.
    Antos SA; Albert MV; Kording KP
    J Neurosci Methods; 2014 Jul; 231():22-30. PubMed ID: 24091138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMART MOVE - a smartphone-based intervention to promote physical activity in primary care: study protocol for a randomized controlled trial.
    Glynn LG; Hayes PS; Casey M; Glynn F; Alvarez-Iglesias A; Newell J; Ólaighin G; Heaney D; Murphy AW
    Trials; 2013 May; 14():157. PubMed ID: 23714362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards remote evaluation of movement disorders via smartphones.
    Kostikis N; Hristu-Varsakelis D; Arnaoutoglou M; Kotsavasiloglou C; Baloyiannis S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5240-3. PubMed ID: 22255519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring and influencing physical activity with smartphone technology: a systematic review.
    Bort-Roig J; Gilson ND; Puig-Ribera A; Contreras RS; Trost SG
    Sports Med; 2014 May; 44(5):671-86. PubMed ID: 24497157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.