BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25001285)

  • 21. Role of the individual domains of translation termination factor eRF1 in GTP binding to eRF3.
    Kononenko AV; Mitkevich VA; Dubovaya VI; Kolosov PM; Makarov AA; Kisselev LL
    Proteins; 2008 Feb; 70(2):388-93. PubMed ID: 17680691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3].
    Dubovaia VI; Kolosov PM; Alkalaeva EZ; Frolova LIu; Kiselev LL
    Mol Biol (Mosk); 2006; 40(2):310-6. PubMed ID: 16637272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction.
    Merkulova TI; Frolova LY; Lazar M; Camonis J; Kisselev LL
    FEBS Lett; 1999 Jan; 443(1):41-7. PubMed ID: 9928949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translation Termination and Ribosome Recycling in Eukaryotes.
    Hellen CUT
    Cold Spring Harb Perspect Biol; 2018 Oct; 10(10):. PubMed ID: 29735640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1.
    Eyler DE; Wehner KA; Green R
    J Biol Chem; 2013 Oct; 288(41):29530-8. PubMed ID: 23963452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae.
    Eurwilaichitr L; Graves FM; Stansfield I; Tuite MF
    Mol Microbiol; 1999 May; 32(3):485-96. PubMed ID: 10320572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast.
    Ito K; Ebihara K; Nakamura Y
    RNA; 1998 Aug; 4(8):958-72. PubMed ID: 9701287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of ABCE1 in eukaryotic posttermination ribosomal recycling.
    Pisarev AV; Skabkin MA; Pisareva VP; Skabkina OV; Rakotondrafara AM; Hentze MW; Hellen CU; Pestova TV
    Mol Cell; 2010 Jan; 37(2):196-210. PubMed ID: 20122402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3.
    Akhmaloka ; Susilowati PE; Subandi ; Madayanti F
    Int J Biol Sci; 2008 Apr; 4(2):87-95. PubMed ID: 18463713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into eRF3 and stop codon recognition by eRF1.
    Cheng Z; Saito K; Pisarev AV; Wada M; Pisareva VP; Pestova TV; Gajda M; Round A; Kong C; Lim M; Nakamura Y; Svergun DI; Ito K; Song H
    Genes Dev; 2009 May; 23(9):1106-18. PubMed ID: 19417105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination.
    Urakov VN; Valouev IA; Kochneva-Pervukhova NV; Packeiser AN; Vishnevsky AY; Glebov OO; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2006 Oct; 7():34. PubMed ID: 17034622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translation termination: new factors and insights.
    Baierlein C; Krebber H
    RNA Biol; 2010; 7(5):548-50. PubMed ID: 21081843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes.
    Ma B; Nussinov R
    J Biol Chem; 2004 Dec; 279(51):53875-85. PubMed ID: 15475364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-step model of stop codon recognition by eukaryotic release factor eRF1.
    Kryuchkova P; Grishin A; Eliseev B; Karyagina A; Frolova L; Alkalaeva E
    Nucleic Acids Res; 2013 Apr; 41(8):4573-86. PubMed ID: 23435318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The eRF1 degrader SRI-41315 acts as a molecular glue at the ribosomal decoding center.
    Coelho JPL; Yip MCJ; Oltion K; Taunton J; Shao S
    Nat Chem Biol; 2024 Jul; 20(7):877-884. PubMed ID: 38172604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1.
    Hatin I; Fabret C; Rousset JP; Namy O
    Nucleic Acids Res; 2009 Apr; 37(6):1789-98. PubMed ID: 19174561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells.
    Beznosková P; Cuchalová L; Wagner S; Shoemaker CJ; Gunišová S; von der Haar T; Valášek LS
    PLoS Genet; 2013 Nov; 9(11):e1003962. PubMed ID: 24278036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition.
    Bertram G; Bell HA; Ritchie DW; Fullerton G; Stansfield I
    RNA; 2000 Sep; 6(9):1236-47. PubMed ID: 10999601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1.
    Frolova L; Seit-Nebi A; Kisselev L
    RNA; 2002 Feb; 8(2):129-36. PubMed ID: 11911360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome.
    Bulygin KN; Khairulina YS; Kolosov PM; Ven'yaminova AG; Graifer DM; Vorobjev YN; Frolova LY; Kisselev LL; Karpova GG
    RNA; 2010 Oct; 16(10):1902-14. PubMed ID: 20688868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.