BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25001308)

  • 1. Improved plaque assay identifies a novel anti-Chlamydia ceramide derivative with altered intracellular localization.
    Banhart S; Saied EM; Martini A; Koch S; Aeberhard L; Madela K; Arenz C; Heuer D
    Antimicrob Agents Chemother; 2014 Sep; 58(9):5537-46. PubMed ID: 25001308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A series of ceramide analogs modified at the 1-position with potent activity against the intracellular growth of Chlamydia trachomatis.
    Saied EM; Banhart S; Bürkle SE; Heuer D; Arenz C
    Future Med Chem; 2015; 7(15):1971-80. PubMed ID: 26496536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Chlamydia trachomatis Growth During the Last Decade: A Mini-Review.
    Serradji N; Vu TH; Kim H; Panyam J; Verbeke P
    Mini Rev Med Chem; 2018; 18(16):1363-1372. PubMed ID: 29692244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening for Novel Inhibitors of Intracellular Pathogens, Including Chlamydia trachomatis.
    Brown AC; Kushner NL
    Methods Mol Biol; 2019; 2042():279-286. PubMed ID: 31385282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity.
    Good JA; Silver J; Núñez-Otero C; Bahnan W; Krishnan KS; Salin O; Engström P; Svensson R; Artursson P; Gylfe Å; Bergström S; Almqvist F
    J Med Chem; 2016 Mar; 59(5):2094-108. PubMed ID: 26849778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion.
    Scidmore MA; Fischer ER; Hackstadt T
    J Cell Biol; 1996 Jul; 134(2):363-74. PubMed ID: 8707822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Infections with Chlamydia trachomatis].
    Stock I; Henrichfreise B
    Med Monatsschr Pharm; 2012 Jun; 35(6):209-22; quiz 223-4. PubMed ID: 22808665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of efficacy of antimicrobial agents in treatment of infections due to Chlamydia trachomatis.
    Bowie WR; Lee CK; Alexander ER
    J Infect Dis; 1978 Nov; 138(5):655-9. PubMed ID: 712119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth.
    Meštrović T; Virok DP; Ljubin-Sternak S; Raffai T; Burián K; Vraneš J
    Methods Mol Biol; 2019; 2042():33-43. PubMed ID: 31385269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation.
    Sessa R; Di Pietro M; Filardo S; Bressan A; Rosa L; Cutone A; Frioni A; Berlutti F; Paesano R; Valenti P
    Biochem Cell Biol; 2017 Feb; 95(1):34-40. PubMed ID: 28094551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.
    Shima K; Kaufhold I; Eder T; Käding N; Schmidt N; Ogunsulire IM; Deenen R; Köhrer K; Friedrich D; Isay SE; Grebien F; Klinger M; Richer BC; Günther UL; Deepe GS; Rattei T; Rupp J
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydial Infection-Dependent Synthesis of Sphingomyelin as a Novel Anti-Chlamydial Target of Ceramide Mimetic Compounds.
    Kumagai K; Sakai S; Ueno M; Kataoka M; Kobayashi S; Hanada K
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in the treatment of Chlamydia trachomatis infection].
    Shi LL; Lu JC; Huangfu YM
    Zhonghua Nan Ke Xue; 2005 Apr; 11(4):296-8. PubMed ID: 15921264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified Fluoroquinolones as Antimicrobial Compounds Targeting
    Vu TH; Adhel E; Vielfort K; Ha Duong NT; Anquetin G; Jeannot K; Verbeke P; Hjalmar S; Gylfe Å; Serradji N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743189
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of clinically relevant culture conditions on antimicrobial susceptibility of Chlamydia trachomatis.
    Wyrick PB; Davis CH; Raulston JE; Knight ST; Choong J
    Clin Infect Dis; 1994 Nov; 19(5):931-6. PubMed ID: 7893882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis.
    Zhou Y; Lu X; Huang D; Lu Y; Zhang H; Zhang L; Yu P; Wang F; Wang Y
    Biochem Biophys Res Commun; 2019 Aug; 516(1):157-162. PubMed ID: 31202460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of Chlamydia trachomatis to the excipient hydroxyethyl cellulose: pH and concentration dependence of antimicrobial activity.
    Sater AA; Ojcius DM; Meyer MP
    Antimicrob Agents Chemother; 2008 Jul; 52(7):2660-2. PubMed ID: 18411317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report.
    Wang SA; Papp JR; Stamm WE; Peeling RW; Martin DH; Holmes KK
    J Infect Dis; 2005 Mar; 191(6):917-23. PubMed ID: 15717267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.