These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25001405)

  • 21. Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells.
    Villegas CE; Mendonça PB; Rocha AR
    Sci Rep; 2014 Oct; 4():6579. PubMed ID: 25301001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of Room-Temperature Photoluminescence Blinking in Armchair-Edge Graphene Nanoribbons.
    Pfeiffer M; Senkovskiy BV; Haberer D; Fischer FR; Yang F; Meerholz K; Ando Y; Grüneis A; Lindfors K
    Nano Lett; 2018 Nov; 18(11):7038-7044. PubMed ID: 30336056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study.
    Kvashnin DG; Ghorbani-Asl M; Shtansky DV; Golberg D; Krasheninnikov AV; Sorokin PB
    Nanoscale; 2016 Dec; 8(48):20080-20089. PubMed ID: 27892592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion.
    Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J
    ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons.
    Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy.
    Deniz O; Sánchez-Sánchez C; Dumslaff T; Feng X; Narita A; Müllen K; Kharche N; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Apr; 17(4):2197-2203. PubMed ID: 28301723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of Electronic, Optical Absorption and Emission in Pure and Metal-Decorated Graphene Nanoribbons (C29 H14 -X; X=Ni, Fe, Ti, Co(+) , Al(+) , Cu(+) ): First Principles Calculations.
    Chopra S
    Chemphyschem; 2015 Jun; 16(9):1948-53. PubMed ID: 25872903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes.
    Lim HE; Miyata Y; Fujihara M; Okada S; Liu Z; Arifin ; Sato K; Omachi H; Kitaura R; Irle S; Suenaga K; Shinohara H
    ACS Nano; 2015 May; 9(5):5034-40. PubMed ID: 25868574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of edge geometry and magnetic interaction in opening bandgap of low-dimensional graphene.
    Zhu Y; Lian J; Jiang Q
    Chemphyschem; 2014 Apr; 15(5):958-65. PubMed ID: 24616008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons.
    Zhou W; Luo C; Chao Y; Xiong S; Long M; Chen T
    RSC Adv; 2024 Mar; 14(12):8067-8074. PubMed ID: 38454942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E
    Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.