These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25001495)

  • 1. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level.
    Shepherd JH; Riley GP; Screen HR
    J Mech Behav Biomed Mater; 2014 Oct; 38():163-72. PubMed ID: 25001495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour.
    Shepherd JH; Legerlotz K; Demirci T; Klemt C; Riley GP; Screen HR
    Proc Inst Mech Eng H; 2014 Jan; 228(1):49-59. PubMed ID: 24285289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue loading of tendon.
    Shepherd JH; Screen HR
    Int J Exp Pathol; 2013 Aug; 94(4):260-70. PubMed ID: 23837793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HRC
    Acta Biomater; 2016 Sep; 42():308-315. PubMed ID: 27286677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subrupture tendon fatigue damage.
    Fung DT; Wang VM; Laudier DM; Shine JH; Basta-Pljakic J; Jepsen KJ; Schaffler MB; Flatow EL
    J Orthop Res; 2009 Feb; 27(2):264-273. PubMed ID: 18683881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanical effects of in vivo fatigue damage induction on murine tendon.
    Sereysky JB; Andarawis-Puri N; Jepsen KJ; Flatow EL
    J Orthop Res; 2012 Jun; 30(6):965-72. PubMed ID: 22072573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low stress tendon fatigue is a relatively rapid process in the context of overuse injuries.
    Parent G; Huppé N; Langelier E
    Ann Biomed Eng; 2011 May; 39(5):1535-45. PubMed ID: 21287276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a continuum damage model to predict accumulation of sub-failure damage in tendons.
    Allan AN; Zitnay JL; Maas SA; Weiss JA
    J Mech Behav Biomed Mater; 2022 Nov; 135():105342. PubMed ID: 36055109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of collagen and elastin to elastic behaviours of tendon fascicle.
    Ishizaki Y; Wang J; Kim J; Matsumoto T; Maeda E
    Acta Biomater; 2024 Mar; 176():334-343. PubMed ID: 38237712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural stress relaxation mechanics in functionally different tendons.
    Screen HR; Toorani S; Shelton JC
    Med Eng Phys; 2013 Jan; 35(1):96-102. PubMed ID: 22652381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tendon fatigue in response to mechanical loading.
    Andarawis-Puri N; Flatow EL
    J Musculoskelet Neuronal Interact; 2011 Jun; 11(2):106-14. PubMed ID: 21625047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of overuse tendinopathy: A new descriptive model for the initiation of tendon damage during cyclic loading.
    Herod TW; Veres SP
    J Orthop Res; 2018 Jan; 36(1):467-476. PubMed ID: 28598009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributing a fixed amount of cyclic loading to tendon explants over longer periods induces greater cellular and mechanical responses.
    Devkota AC; Tsuzaki M; Almekinders LC; Banes AJ; Weinhold PS
    J Orthop Res; 2007 Aug; 25(8):1078-86. PubMed ID: 17457818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic amplitude-modulated stretching of rabbit flexor digitorum profundus tendons reduces stiffness compared to cyclic loading but does not affect tenocyte metabolism.
    Steiner TH; Bürki A; Ferguson SJ; Gantenbein-Ritter B
    BMC Musculoskelet Disord; 2012 Nov; 13():222. PubMed ID: 23150982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading.
    Lee AH; Szczesny SE; Santare MH; Elliott DM
    Acta Biomater; 2017 Jul; 57():363-372. PubMed ID: 28435080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic mechanisms of tendon fatigue damage.
    Neviaser A; Andarawis-Puri N; Flatow E
    J Shoulder Elbow Surg; 2012 Feb; 21(2):158-63. PubMed ID: 22244058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading.
    Thorpe CT; Riley GP; Birch HL; Clegg PD; Screen HR
    J R Soc Interface; 2014 Mar; 11(92):20131058. PubMed ID: 24402919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammatory cells do not decrease the ultimate tensile strength of intact tendons in vivo and in vitro: protective role of mechanical loading.
    Marsolais D; Duchesne E; Côté CH; Frenette J
    J Appl Physiol (1985); 2007 Jan; 102(1):11-7. PubMed ID: 16916923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.