These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25001557)
21. Utilization of waste glycerol for the production of biocontrol agents nigericin and niphimycin by Mitrović I; Grahovac J; Hrustić J; Jokić A; Dodić J; Mihajlović M; Grahovac M Environ Technol; 2022 Aug; 43(19):3000-3013. PubMed ID: 33820481 [TBL] [Abstract][Full Text] [Related]
22. Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Moon C; Lee CH; Sang BI; Um Y Bioresour Technol; 2011 Nov; 102(22):10561-8. PubMed ID: 21945663 [TBL] [Abstract][Full Text] [Related]
23. Effect of immobilisation on production of rapamycin by Streptomyces hygroscopicus. Sinha R; Srivastava P Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):25-28. PubMed ID: 28968205 [TBL] [Abstract][Full Text] [Related]
24. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM 2499. Chauhan AK; Survase SA; Kishenkumar J; Annapure US J Gen Appl Microbiol; 2009 Jun; 55(3):171-80. PubMed ID: 19590144 [TBL] [Abstract][Full Text] [Related]
25. A selective medium for recovery and enumeration of endolithic bacteria. Bhattacharjee K; Joshi SR J Microbiol Methods; 2016 Oct; 129():44-54. PubMed ID: 27480051 [TBL] [Abstract][Full Text] [Related]
26. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. Geng H; Liu H; Liu J; Wang C; Wen J World J Microbiol Biotechnol; 2017 Jun; 33(6):101. PubMed ID: 28466297 [TBL] [Abstract][Full Text] [Related]
27. A statistical approach using L(25) orthogonal array method to study fermentative production of clavulanic acid by Streptomyces clavuligerus MTCC 1142. Saudagar PS; Singhal RS Appl Biochem Biotechnol; 2007 Mar; 136(3):345-59. PubMed ID: 17625238 [TBL] [Abstract][Full Text] [Related]
28. Optimization of the production medium for biosynthesis of antifungal antibiotic AK-111-81 by phosphate-deregulated mutant of Streptomyces hygroscopicus. Gesheva V Appl Biochem Biotechnol; 2009 Jul; 158(1):20-4. PubMed ID: 19529894 [TBL] [Abstract][Full Text] [Related]
29. Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Rajeswari P; Jose PA; Amiya R; Jebakumar SR Front Microbiol; 2014; 5():753. PubMed ID: 25653640 [TBL] [Abstract][Full Text] [Related]
30. Modeling-based optimization approaches for the development of Anti-Agrobacterium tumefaciens activity using Streptomyces sp TN71. Smaoui S; Ennouri K; Chakchouk-Mtibaa A; Sellem I; Bouchaala K; Karray-Rebai I; Ben Ayed R; Mathieu F; Mellouli L Microb Pathog; 2018 Jun; 119():19-27. PubMed ID: 29626659 [TBL] [Abstract][Full Text] [Related]
31. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. Zhou W; Liu X; Zhang P; Zhou P; Shi X Molecules; 2014 Sep; 19(10):15507-20. PubMed ID: 25264834 [TBL] [Abstract][Full Text] [Related]
32. Streptomyces thermoviolaceus SRC3 strain as a novel source of the antibiotic adjuvant streptazolin: A statistical approach toward the optimized production. Djinni I; Djoudi W; Souagui S; Rabia F; Rahmouni S; Mancini I; Kecha M J Microbiol Methods; 2018 May; 148():161-168. PubMed ID: 29665368 [TBL] [Abstract][Full Text] [Related]
33. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. Dang L; Liu J; Wang C; Liu H; Wen J J Ind Microbiol Biotechnol; 2017 Feb; 44(2):259-270. PubMed ID: 27909940 [TBL] [Abstract][Full Text] [Related]
34. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. Kuscer E; Coates N; Challis I; Gregory M; Wilkinson B; Sheridan R; Petković H J Bacteriol; 2007 Jul; 189(13):4756-63. PubMed ID: 17468238 [TBL] [Abstract][Full Text] [Related]
35. Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus. Cheng YR; Fang A; Demain AL Appl Microbiol Biotechnol; 1995 Nov; 43(6):1096-8. PubMed ID: 8590661 [TBL] [Abstract][Full Text] [Related]
36. Improvement of microbial strain and fermentation process of rapamycin biosynthesis. Baby Rani P; Battula SK; Rao AK; Gunja M; Narasu ML Prep Biochem Biotechnol; 2013; 43(6):539-50. PubMed ID: 23742086 [TBL] [Abstract][Full Text] [Related]
37. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Gao H; Liu M; Liu J; Dai H; Zhou X; Liu X; Zhuo Y; Zhang W; Zhang L Bioresour Technol; 2009 Sep; 100(17):4012-6. PubMed ID: 19356927 [TBL] [Abstract][Full Text] [Related]
38. Optimization of the Biosynthesis Conditions of Daptomycin by the Biostatistical Methodology. Yu G; Wang G Interdiscip Sci; 2017 Mar; 9(1):80-87. PubMed ID: 26582535 [TBL] [Abstract][Full Text] [Related]
39. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Chen J; Lan X; Jia R; Hu L; Wang Y Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144456 [No Abstract] [Full Text] [Related]
40. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Yan L; Zhang Z; Zhang Y; Yang H; Qiu G; Wang D; Lian Y Biotechnol Lett; 2021 Sep; 43(9):1765-1778. PubMed ID: 34021830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]