These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25002038)
21. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces. Teli MN; Anderson C Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2486-9. PubMed ID: 19964967 [TBL] [Abstract][Full Text] [Related]
22. Comparison of filtering and classification techniques of electroencephalography for brain-computer interface. Renfrew M; Cheng R; Daly JJ; Cavusoglu M Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2634-7. PubMed ID: 19163244 [TBL] [Abstract][Full Text] [Related]
23. Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach. Belur Nagaraj S; Ramaswamy SM; Weerink MAS; Struys MMRF Anesth Analg; 2020 May; 130(5):1211-1221. PubMed ID: 32287128 [TBL] [Abstract][Full Text] [Related]
24. Fractal analysis of EEG upon auditory stimulation during waking and hypnosis in healthy volunteers. Lee JS; Koo BH Int J Clin Exp Hypn; 2012; 60(3):266-85. PubMed ID: 22681326 [TBL] [Abstract][Full Text] [Related]
25. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. Herman P; Prasad G; McGinnity TM; Coyle D IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380 [TBL] [Abstract][Full Text] [Related]
26. Ongoing Dynamics of Peak Alpha Frequency Characterize Hypnotic Induction in Highly Hypnotic-Susceptible Individuals. Landry M; da Silva Castanheira J; Rousseaux F; Rainville P; Ogez D; Jerbi K Brain Sci; 2024 Aug; 14(9):. PubMed ID: 39335379 [TBL] [Abstract][Full Text] [Related]
27. The phenomenology of the experiences and the depth of hypnosis: comparison of direct and indirect induction techniques. Szabó C Int J Clin Exp Hypn; 1993 Jul; 41(3):225-33. PubMed ID: 8335421 [TBL] [Abstract][Full Text] [Related]
28. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. Garrett D; Peterson DA; Anderson CW; Thaut MH IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257 [TBL] [Abstract][Full Text] [Related]
29. Higher hypnotic suggestibility is associated with the lower EEG signal variability in theta, alpha, and beta frequency bands. Keshmiri S; Alimardani M; Shiomi M; Sumioka H; Ishiguro H; Hiraki K PLoS One; 2020; 15(4):e0230853. PubMed ID: 32271781 [TBL] [Abstract][Full Text] [Related]
30. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring. Kreuzer M; Kochs EF; Schneider G; Jordan D J Clin Monit Comput; 2014 Dec; 28(6):573-80. PubMed ID: 24442330 [TBL] [Abstract][Full Text] [Related]
31. Nonlinear dynamics captures brain states at different levels of consciousness in patients anesthetized with propofol. Eagleman SL; Chander D; Reynolds C; Ouellette NT; MacIver MB PLoS One; 2019; 14(10):e0223921. PubMed ID: 31665174 [TBL] [Abstract][Full Text] [Related]
32. Elman neural networks for dynamic modeling of epileptic EEG. Kannathal N; Puthusserypady SK; Min LC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6145-8. PubMed ID: 17945939 [TBL] [Abstract][Full Text] [Related]
33. Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier. Darvishi S; Al-Ani A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3220-3. PubMed ID: 18002681 [TBL] [Abstract][Full Text] [Related]
34. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. Li D; Li X; Liang Z; Voss LJ; Sleigh JW J Neural Eng; 2010 Aug; 7(4):046010. PubMed ID: 20581428 [TBL] [Abstract][Full Text] [Related]
35. Determination of neural state classification metrics from the power spectrum of human ECoG. Kelsey M; Politte D; Verner R; Zempel JM; Nolan T; Babajani-Feremi A; Prior F; Larson-Prior LJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4336-40. PubMed ID: 23366887 [TBL] [Abstract][Full Text] [Related]
37. The impacts of hypnotic susceptibility on chaotic dynamics of EEG signals during standard tasks of Waterloo-Stanford Group Scale. Yargholi E; Nasrabadi AM J Med Eng Technol; 2013 May; 37(4):273-81. PubMed ID: 23705995 [TBL] [Abstract][Full Text] [Related]
38. Eliminating stroop effects with post-hypnotic instructions: Brain mechanisms inferred from EEG. Zahedi A; Stuermer B; Hatami J; Rostami R; Sommer W Neuropsychologia; 2017 Feb; 96():70-77. PubMed ID: 28077327 [TBL] [Abstract][Full Text] [Related]
39. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. Adeli H; Ghosh-Dastidar S; Dadmehr N IEEE Trans Biomed Eng; 2007 Feb; 54(2):205-11. PubMed ID: 17278577 [TBL] [Abstract][Full Text] [Related]
40. The Fingerprint of Rapid Eye Movement: Its Algorithmic Detection in the Sleep Electroencephalogram Using a Single Derivation. McCarty DE; Kim PY; Frilot C; Chesson AL; Marino AA Clin EEG Neurosci; 2016 Oct; 47(4):298-304. PubMed ID: 25398850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]