These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25002043)

  • 21. Bloodstain pattern analysis--casework experience.
    Karger B; Rand S; Fracasso T; Pfeiffer H
    Forensic Sci Int; 2008 Oct; 181(1-3):15-20. PubMed ID: 18790581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of fabric mass per unit area and blood impact velocity on bloodstain morphology.
    Dicken L; Knock C; Carr DJ; Beckett S
    Forensic Sci Int; 2019 Aug; 301():12-27. PubMed ID: 31128405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of yarn size and blood drop size on wicking and bloodstains in textiles.
    Baby R; Michielsen S; Wu J
    J Forensic Sci; 2021 Jul; 66(4):1246-1256. PubMed ID: 33724465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the visibility of blood on dark surfaces: A practical evaluation of visible light, NIR, and SWIR imaging.
    Schotman TG; Westen AA; van der Weerd J; de Bruin KG
    Forensic Sci Int; 2015 Dec; 257():214-219. PubMed ID: 26386337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bloodstains on woven fabric: Simulations and experiments for quantifying the uncertainty on the impact and directional angles.
    Agrawal P; Barnet L; Attinger D
    Forensic Sci Int; 2017 Sep; 278():240-252. PubMed ID: 28763684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining how diluted bloodstains were derived: Inferring distinctive characteristics and formulating a guideline.
    van den Berge M; de Vries FG; van der Scheer M; Sijen T; Meijrink L
    Forensic Sci Int; 2019 Sep; 302():109918. PubMed ID: 31421437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical enhancement of footwear impressions in blood on fabric - part 1: protein stains.
    Farrugia KJ; Savage KA; Bandey H; Nic Daéid N
    Sci Justice; 2011 Sep; 51(3):99-109. PubMed ID: 21889106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of a visualization assay for blood on forensic evidence.
    Vandewoestyne M; Lepez T; Van Hoofstat D; Deforce D
    J Forensic Sci; 2015 May; 60(3):707-11. PubMed ID: 25703033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of reactive dyeing of fabric on the morphology of passive bloodstains.
    Dicken L; Knock C; Carr DJ; Beckett S
    Forensic Sci Int; 2022 Jul; 336():111317. PubMed ID: 35504096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating bloodstain dynamics at impact on the technical rear of fabric.
    Dicken L; Knock C; Carr DJ; Beckett S
    Forensic Sci Int; 2019 Aug; 301():142-148. PubMed ID: 31153991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the morphology and presumptive chemistry of impact and pooled bloodstain patterns by Lucilia sericata (Meigen) (Diptera: Calliphoridae).
    Fujikawa A; Barksdale L; Higley LG; Carter DO
    J Forensic Sci; 2011 Sep; 56(5):1315-8. PubMed ID: 21554312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the detectability of different ages of bloodstains on fabrics in different washing conditions and at various wavelengths.
    Öner Kaya D; Karadayi Ş; Karadayi B; Çetin G
    J Forensic Leg Med; 2023 Feb; 94():102486. PubMed ID: 36680945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ring phenomenon of diluted blood droplets.
    Ramsthaler F; Schlote J; Wagner C; Fiscina J; Kettner M
    Int J Legal Med; 2016 May; 130(3):731-6. PubMed ID: 26718842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detectability of bloodstains after machine washing.
    Hofmann M; Adamec J; Anslinger K; Bayer B; Graw M; Peschel O; Schulz MM
    Int J Legal Med; 2019 Jan; 133(1):3-16. PubMed ID: 30032458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of infrared photography for latent bloodstain visualization and the influence of time.
    Winnepenninckx A; Verhoeven E; Vermeulen S; Bekaert B
    Forensic Sci Int; 2022 Feb; 331():111167. PubMed ID: 34992011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circumventing substrate interference in the Raman spectroscopic identification of blood stains.
    McLaughlin G; Sikirzhytski V; Lednev IK
    Forensic Sci Int; 2013 Sep; 231(1-3):157-66. PubMed ID: 23890631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests.
    Vandenberg N; van Oorschot RA
    J Forensic Sci; 2006 Mar; 51(2):361-70. PubMed ID: 16566772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical enhancement techniques of bloodstain patterns and DNA recovery after fire exposure.
    Tontarski KL; Hoskins KA; Watkins TG; Brun-Conti L; Michaud AL
    J Forensic Sci; 2009 Jan; 54(1):37-48. PubMed ID: 19018938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: Visualizing blood on fabrics.
    Brooke H; Baranowski MR; McCutcheon JN; Morgan SL; Myrick ML
    Anal Chem; 2010 Oct; 82(20):8427-31. PubMed ID: 20863136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bloodstain pattern analysis: ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains.
    Buck U; Kneubuehl B; Näther S; Albertini N; Schmidt L; Thali M
    Forensic Sci Int; 2011 Mar; 206(1-3):22-8. PubMed ID: 20598820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.