These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25002069)
1. Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning. Ivanov AS; Boldyrev AI Org Biomol Chem; 2014 Aug; 12(32):6145-50. PubMed ID: 25002069 [TBL] [Abstract][Full Text] [Related]
2. Description of aromaticity in porphyrinoids. Wu JI; Fernández I; Schleyer Pv J Am Chem Soc; 2013 Jan; 135(1):315-21. PubMed ID: 23205604 [TBL] [Abstract][Full Text] [Related]
3. Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. Zubarev DY; Boldyrev AI J Org Chem; 2008 Dec; 73(23):9251-8. PubMed ID: 18980326 [TBL] [Abstract][Full Text] [Related]
4. Developing paradigms of chemical bonding: adaptive natural density partitioning. Zubarev DY; Boldyrev AI Phys Chem Chem Phys; 2008 Sep; 10(34):5207-17. PubMed ID: 18728862 [TBL] [Abstract][Full Text] [Related]
5. The origin of global and macrocyclic aromaticity in porphyrinoids. Nakagami Y; Sekine R; Aihara J Org Biomol Chem; 2012 Jul; 10(27):5219-29. PubMed ID: 22692628 [TBL] [Abstract][Full Text] [Related]
6. Trimeric and Tetrameric Electron-Deficient Porphyrin Tapes. Mori H; Kim T; Kim D; Osuka A Chem Asian J; 2016 May; 11(9):1454-63. PubMed ID: 26991968 [TBL] [Abstract][Full Text] [Related]
7. Quantification of the (anti)aromaticity of fulvalenes subjected to pi-electron cross-delocalization. Kleinpeter E; Holzberger A; Wacker P J Org Chem; 2008 Jan; 73(1):56-65. PubMed ID: 18072786 [TBL] [Abstract][Full Text] [Related]
8. Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids. Woller T; Geerlings P; De Proft F; Champagne B; Alonso M Molecules; 2018 Jun; 23(6):. PubMed ID: 29865191 [TBL] [Abstract][Full Text] [Related]
9. Is coronene better described by Clar's aromatic π-sextet model or by the AdNDP representation? Kumar A; Duran M; Solà M J Comput Chem; 2017 Jul; 38(18):1606-1611. PubMed ID: 28394019 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and computational study of β-ethynylphenylene substituted zinc and free-base porphyrins. Earles JC; Gordon KC; Stephenson AW; Partridge AC; Officer DL Phys Chem Chem Phys; 2011 Jan; 13(4):1597-605. PubMed ID: 21125110 [TBL] [Abstract][Full Text] [Related]
11. Control and Switching of Aromaticity in Various All-Aza-Expanded Porphyrins: Spectroscopic and Theoretical Analyses. Sung YM; Oh J; Cha WY; Kim W; Lim JM; Yoon MC; Kim D Chem Rev; 2017 Feb; 117(4):2257-2312. PubMed ID: 27981841 [TBL] [Abstract][Full Text] [Related]
12. How does aromaticity rule the thermodynamic stability of hydroporphyrins? Otero N; Fias S; Radenković S; Bultinck P; Graña AM; Mandado M Chemistry; 2011 Mar; 17(11):3274-86. PubMed ID: 21328496 [TBL] [Abstract][Full Text] [Related]
13. Macrocyclic conjugation in N-fused porphyrins and related species. Aihara J; Makino M J Mol Model; 2009 Dec; 15(12):1427-33. PubMed ID: 19424732 [TBL] [Abstract][Full Text] [Related]
14. Unraveling the electronic structure of azolehemiporphyrazines: direct spectroscopic observation of magnetic dipole allowed nature of the lowest π-π* transition of 20π-electron porphyrinoids. Muranaka A; Ohira S; Toriumi N; Hirayama M; Kyotani F; Mori Y; Hashizume D; Uchiyama M J Phys Chem A; 2014 Jun; 118(25):4415-24. PubMed ID: 24866729 [TBL] [Abstract][Full Text] [Related]
15. Control of the site and potential of reduction and oxidation processes in pi-expanded quinoxalinoporphyrins. Sintic PJ; E W; Ou Z; Shao J; McDonald JA; Cai ZL; Kadish KM; Crossley MJ; Reimers JR Phys Chem Chem Phys; 2008 Jan; 10(4):515-27. PubMed ID: 18183309 [TBL] [Abstract][Full Text] [Related]
16. Control of the site and potential of reduction and oxidation processes in pi-expanded quinoxalinoporphyrins. Sintic PJ; E W; Ou Z; Shao J; McDonald JA; Cai ZL; Kadish KM; Crossley MJ; Reimers JR Phys Chem Chem Phys; 2008 Jan; 10(2):268-80. PubMed ID: 18273994 [TBL] [Abstract][Full Text] [Related]
17. New insight into the electronic structure of iron(IV)-oxo porphyrin compound I. A quantum chemical topological analysis. Viciano I; Berski S; Martí S; Andrés J J Comput Chem; 2013 Apr; 34(9):780-9. PubMed ID: 23233452 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, crystal structure, and photodynamics of π-expanded porphyrin-fullerene dyads synthesized by Diels-Alder reaction. Yamada H; Ohkubo K; Kuzuhara D; Takahashi T; Sandanayaka AS; Okujima T; Ohara K; Ito O; Uno H; Ono N; Fukuzumi S J Phys Chem B; 2010 Nov; 114(45):14717-28. PubMed ID: 20527754 [TBL] [Abstract][Full Text] [Related]
19. The role of aromaticity and the pi-conjugated framework in multiporphyrinic systems as single-molecule switches. Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y Small; 2008 Jul; 4(7):962-9. PubMed ID: 18574801 [TBL] [Abstract][Full Text] [Related]
20. Electronic structure of triangular M Li G; Meng L; Zhang H; Li X; Zeng Y Phys Chem Chem Phys; 2020 Aug; 22(32):18071-18077. PubMed ID: 32760940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]