BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25002092)

  • 1. Biomass utilization by gut microbiomes.
    White BA; Lamed R; Bayer EA; Flint HJ
    Annu Rev Microbiol; 2014; 68():279-96. PubMed ID: 25002092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract.
    Flint HJ; Bayer EA
    Ann N Y Acad Sci; 2008 Mar; 1125():280-8. PubMed ID: 18378598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system.
    Naas AE; Solden LM; Norbeck AD; Brewer H; Hagen LH; Heggenes IM; McHardy AC; Mackie RI; Paša-Tolić L; Arntzen MØ; Eijsink VGH; Koropatkin NM; Hess M; Wrighton KC; Pope PB
    Microbiome; 2018 Mar; 6(1):44. PubMed ID: 29490697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen.
    Dai X; Tian Y; Li J; Luo Y; Liu D; Zheng H; Wang J; Dong Z; Hu S; Huang L
    Appl Environ Microbiol; 2015 Feb; 81(4):1375-86. PubMed ID: 25501482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle.
    Jose VL; More RP; Appoothy T; Arun AS
    Syst Appl Microbiol; 2017 Apr; 40(3):160-170. PubMed ID: 28284522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of diet on the gut microbiota.
    Scott KP; Gratz SW; Sheridan PO; Flint HJ; Duncan SH
    Pharmacol Res; 2013 Mar; 69(1):52-60. PubMed ID: 23147033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation.
    Svartström O; Alneberg J; Terrapon N; Lombard V; de Bruijn I; Malmsten J; Dalin AM; El Muller E; Shah P; Wilmes P; Henrissat B; Aspeborg H; Andersson AF
    ISME J; 2017 Nov; 11(11):2538-2551. PubMed ID: 28731473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses.
    Gharechahi J; Vahidi MF; Sharifi G; Ariaeenejad S; Ding XZ; Han JL; Salekdeh GH
    Environ Res; 2023 Jul; 229():115925. PubMed ID: 37086884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide Utilization Loci: Fueling Microbial Communities.
    Grondin JM; Tamura K; Déjean G; Abbott DW; Brumer H
    J Bacteriol; 2017 Aug; 199(15):. PubMed ID: 28138099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human gut microbiota and bifidobacteria: from composition to functionality.
    Turroni F; Ribbera A; Foroni E; van Sinderen D; Ventura M
    Antonie Van Leeuwenhoek; 2008 Jun; 94(1):35-50. PubMed ID: 18338233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity.
    Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE
    mSphere; 2017; 2(4):. PubMed ID: 28776044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of complex carbohydrates in the gut.
    Flint HJ; Scott KP; Duncan SH; Louis P; Forano E
    Gut Microbes; 2012; 3(4):289-306. PubMed ID: 22572875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota.
    El Kaoutari A; Armougom F; Gordon JI; Raoult D; Henrissat B
    Nat Rev Microbiol; 2013 Jul; 11(7):497-504. PubMed ID: 23748339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification.
    Parmar NR; Solanki JV; Patel AB; Shah TM; Patel AK; Parnerkar S; Kumar JI; Joshi CG
    J Mol Microbiol Biotechnol; 2014; 24(4):249-61. PubMed ID: 25228469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.
    Tauzin AS; Kwiatkowski KJ; Orlovsky NI; Smith CJ; Creagh AL; Haynes CA; Wawrzak Z; Brumer H; Koropatkin NM
    mBio; 2016 Apr; 7(2):e02134-15. PubMed ID: 27118585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host.
    Leser TD; Mølbak L
    Environ Microbiol; 2009 Sep; 11(9):2194-206. PubMed ID: 19737302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line.
    Wang K; Gao P; Geng L; Liu C; Zhang J; Shu C
    Microbiome; 2022 Jun; 10(1):90. PubMed ID: 35698170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
    Martens EC; Lowe EC; Chiang H; Pudlo NA; Wu M; McNulty NP; Abbott DW; Henrissat B; Gilbert HJ; Bolam DN; Gordon JI
    PLoS Biol; 2011 Dec; 9(12):e1001221. PubMed ID: 22205877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota.
    Kohl KD; Miller AW; Marvin JE; Mackie R; Dearing MD
    Environ Microbiol; 2014 Sep; 16(9):2869-78. PubMed ID: 24373154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver (
    Wong MT; Wang W; Couturier M; Razeq FM; Lombard V; Lapebie P; Edwards EA; Terrapon N; Henrissat B; Master ER
    Front Microbiol; 2017; 8():2504. PubMed ID: 29326667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.