BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25002401)

  • 21. CTCF-binding sites within the H19 ICR differentially regulate local chromatin structures and cis-acting functions.
    Guibert S; Zhao Z; Sjölinder M; Göndör A; Fernandez A; Pant V; Ohlsson R
    Epigenetics; 2012 Apr; 7(4):361-9. PubMed ID: 22415163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod.
    Osborn DP; Li K; Hinits Y; Hughes SM
    Dev Biol; 2011 Feb; 350(2):464-75. PubMed ID: 21147088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estrogen receptor regulates MyoD gene expression by preventing AP-1-mediated repression.
    Pedraza-Alva G; Zingg JM; Donda A; Pérez-Martínez L
    Biochem Biophys Res Commun; 2009 Nov; 389(2):360-5. PubMed ID: 19723510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells.
    Min H; Kong KA; Lee JY; Hong CP; Seo SH; Roh TY; Bae SS; Kim MH
    IUBMB Life; 2016 Jun; 68(6):436-44. PubMed ID: 27080371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MyoD induces the expression of p57Kip2 in cells lacking p21Cip1/Waf1: overlapping and distinct functions of the two cdk inhibitors.
    Figliola R; Maione R
    J Cell Physiol; 2004 Sep; 200(3):468-75. PubMed ID: 15254975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage.
    Bowlin KM; Embree LJ; Garry MG; Garry DJ; Shi X
    Differentiation; 2013; 86(4-5):184-91. PubMed ID: 24361185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and perturbation of CTCF-mediated chromatin interactions for enhancing myogenic transdifferentiation.
    Ren R; Fan Y; Peng Z; Wang S; Jiang Y; Fu L; Cao J; Zhao S; Wang H
    Cell Rep; 2022 Aug; 40(7):111206. PubMed ID: 35977522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclin D3 promotes myogenic differentiation and Pax7 transcription.
    Gurung R; Parnaik VK
    J Cell Biochem; 2012 Jan; 113(1):209-19. PubMed ID: 21898542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
    Narendra V; Rocha PP; An D; Raviram R; Skok JA; Mazzoni EO; Reinberg D
    Science; 2015 Feb; 347(6225):1017-21. PubMed ID: 25722416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CTCF-mediated topological boundaries during development foster appropriate gene regulation.
    Narendra V; Bulajić M; Dekker J; Mazzoni EO; Reinberg D
    Genes Dev; 2016 Dec; 30(24):2657-2662. PubMed ID: 28087711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CTCF: making the right connections.
    Ghirlando R; Felsenfeld G
    Genes Dev; 2016 Apr; 30(8):881-91. PubMed ID: 27083996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage.
    Fong AP; Yao Z; Zhong JW; Johnson NM; Farr GH; Maves L; Tapscott SJ
    Cell Rep; 2015 Mar; 10(12):1937-46. PubMed ID: 25801030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation.
    Labade AS; Salvi A; Kar S; Karmodiya K; Sengupta K
    J Cell Sci; 2021 Dec; 134(23):. PubMed ID: 34746948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin loop dynamics during cellular differentiation are associated with changes to both anchor and internal regulatory features.
    Bond ML; Davis ES; Quiroga IY; Dey A; Kiran M; Love MI; Won H; Phanstiel DH
    Genome Res; 2023 Aug; 33(8):1258-1268. PubMed ID: 37699658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion dynamics.
    Sept CE; Tak YE; Cerda-Smith CG; Hutchinson HM; Goel V; Blanchette M; Bhakta MS; Hansen AS; Joung JK; Johnstone S; Eyler CE; Aryee MJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing in 3D: the role of CTCF in cell differentiation.
    Arzate-Mejía RG; Recillas-Targa F; Corces VG
    Development; 2018 Mar; 145(6):. PubMed ID: 29567640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosome folding and its regulation in health and disease.
    Wang XQD; Dostie J
    Curr Opin Genet Dev; 2017 Apr; 43():23-30. PubMed ID: 27940207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CTCF/cohesin organize the ground state of chromatin-nuclear speckle association.
    Yu R; Roseman S; Siegenfeld AP; Nguyen SC; Joyce EF; Liau BB; Krantz ID; Alexander KA; Berger SL
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of cellular chromatin state: insights from quiescence and differentiation.
    Srivastava S; Mishra RK; Dhawan J
    Organogenesis; 2010; 6(1):37-47. PubMed ID: 20592864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization.
    Ea V; Baudement MO; Lesne A; Forné T
    Genes (Basel); 2015 Jul; 6(3):734-50. PubMed ID: 26226004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.