These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25002419)

  • 61. Molecular Mechanisms of Signaling in Myxococcus xanthus Development.
    Bretl DJ; Kirby JR
    J Mol Biol; 2016 Sep; 428(19):3805-30. PubMed ID: 27430596
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation.
    Müller FD; Treuner-Lange A; Heider J; Huntley SM; Higgs PI
    BMC Genomics; 2010 Apr; 11():264. PubMed ID: 20420673
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus.
    Pham VD; Shebelut CW; Diodati ME; Bull CT; Singer M
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1865-1874. PubMed ID: 15941994
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis.
    Hutchison KW; Hanson RS
    J Bacteriol; 1974 Jul; 119(1):70-5. PubMed ID: 4209776
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel developmental genes, fruCD, of Myxococcus xanthus: involvement of a cell division protein in multicellular development.
    Akiyama T; Inouye S; Komano T
    J Bacteriol; 2003 Jun; 185(11):3317-24. PubMed ID: 12754229
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis.
    Gauvry E; Mathot AG; Couvert O; Leguérinel I; Jules M; Coroller L
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902849
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resource level affects relative performance of the two motility systems of Myxococcus xanthus.
    Hillesland KL; Velicer GJ
    Microb Ecol; 2005 May; 49(4):558-66. PubMed ID: 16052373
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for beta-lactamase induction and provides a mechanism for competitive cell survival.
    O'Connor KA; Zusman DR
    Mol Microbiol; 1997 May; 24(4):839-50. PubMed ID: 9194710
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.
    Cavanagh AT; Wassarman KM
    J Bacteriol; 2013 May; 195(9):2079-86. PubMed ID: 23457253
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Nov; 34(4):714-25. PubMed ID: 10564511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Production and analysis of a Bacillus subtilis biofilm comprised of vegetative cells and spores using a modified colony biofilm model.
    Wahlen LK; Mantei JR; DiOrio JP; Jones CM; Pasmore ME
    J Microbiol Methods; 2018 May; 148():181-187. PubMed ID: 29673789
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The intestinal life cycle of Bacillus subtilis and close relatives.
    Tam NK; Uyen NQ; Hong HA; Duc le H; Hoa TT; Serra CR; Henriques AO; Cutting SM
    J Bacteriol; 2006 Apr; 188(7):2692-700. PubMed ID: 16547057
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of the mac-1 gene encoding a putative ABC transporter from Myxococcus xanthus.
    Kimura Y; Yamanishi Y; Tokumasu Y; Terasaka H; Yoshinobu J
    J Biochem; 2001 Mar; 129(3):351-6. PubMed ID: 11226873
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development.
    Ossa F; Diodati ME; Caberoy NB; Giglio KM; Edmonds M; Singer M; Garza AG
    J Bacteriol; 2007 Dec; 189(23):8474-83. PubMed ID: 17905995
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria.
    Seef S; Herrou J; de Boissier P; My L; Brasseur G; Robert D; Jain R; Mercier R; Cascales E; Habermann BH; Mignot T
    Elife; 2021 Sep; 10():. PubMed ID: 34505573
    [No Abstract]   [Full Text] [Related]  

  • 78. Changes in the extracellular accumulation of antibiotics during growth and sporulation of Bacillus subtilis in liquid culture.
    Barr JG
    J Appl Bacteriol; 1975 Aug; 39(1):1-13. PubMed ID: 809403
    [No Abstract]   [Full Text] [Related]  

  • 79. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.
    McLoon AL; Wuichet K; Häsler M; Keilberg D; Szadkowski D; Søgaard-Andersen L
    J Bacteriol; 2016 Feb; 198(3):510-20. PubMed ID: 26574508
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Branched-chain fatty acids: the case for a novel form of cell-cell signalling during Myxococcus xanthus development.
    Downard J; Toal D
    Mol Microbiol; 1995 Apr; 16(2):171-5. PubMed ID: 7565080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.