These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25002429)

  • 1. Modulation of medium pH by Caulobacter crescentus facilitates recovery from uranium-induced growth arrest.
    Park DM; Jiao Y
    Appl Environ Microbiol; 2014 Sep; 80(18):5680-8. PubMed ID: 25002429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposon Mutagenesis Paired with Deep Sequencing of Caulobacter crescentus under Uranium Stress Reveals Genes Essential for Detoxification and Stress Tolerance.
    Yung MC; Park DM; Overton KW; Blow MJ; Hoover CA; Smit J; Murray SR; Ricci DP; Christen B; Bowman GR; Jiao Y
    J Bacteriol; 2015 Oct; 197(19):3160-72. PubMed ID: 26195598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus.
    Yung MC; Jiao Y
    Appl Environ Microbiol; 2014 Aug; 80(16):4795-804. PubMed ID: 24878600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Basis and Ecological Relevance of
    Heinrich K; Leslie DJ; Morlock M; Bertilsson S; Jonas K
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium.
    Yung MC; Ma J; Salemi MR; Phinney BS; Bowman GR; Jiao Y
    J Proteome Res; 2014 Apr; 13(4):1833-47. PubMed ID: 24555639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus.
    Hu P; Brodie EL; Suzuki Y; McAdams HH; Andersen GL
    J Bacteriol; 2005 Dec; 187(24):8437-49. PubMed ID: 16321948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.
    Jain A; Chen WN
    Appl Microbiol Biotechnol; 2018 May; 102(10):4563-4575. PubMed ID: 29616314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus.
    Wortinger MA; Quardokus EM; Brun YV
    Mol Microbiol; 1998 Aug; 29(4):963-73. PubMed ID: 9767565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stalk formation of Brevundimonas and how it compares to Caulobacter crescentus.
    Curtis PD
    PLoS One; 2017; 12(9):e0184063. PubMed ID: 28886080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation.
    Wagner JK; Galvani CD; Brun YV
    J Bacteriol; 2005 Jan; 187(2):544-53. PubMed ID: 15629926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.
    Gorbatyuk B; Marczynski GT
    Mol Microbiol; 2005 Feb; 55(4):1233-45. PubMed ID: 15686567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus.
    de Young KD; Stankeviciute G; Klein EA
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability.
    England JC; Perchuk BS; Laub MT; Gober JW
    J Bacteriol; 2010 Feb; 192(3):819-33. PubMed ID: 19948804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.
    Takacs CN; Hocking J; Cabeen MT; Bui NK; Poggio S; Vollmer W; Jacobs-Wagner C
    PLoS One; 2013; 8(2):e57579. PubMed ID: 23469030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Adaptations to the Loss of a Conserved Bacterial DNA Methyltransferase.
    Gonzalez D; Collier J
    mBio; 2015 Jul; 6(4):e00952. PubMed ID: 26220966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus.
    Mohl DA; Easter J; Gober JW
    Mol Microbiol; 2001 Nov; 42(3):741-55. PubMed ID: 11722739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of triclosan, penconazole and metalaxyl on Caulobacter crescentus and a freshwater microbial community as assessed by flow cytometry.
    Johnson DR; Czechowska K; Chèvre N; van der Meer JR
    Environ Microbiol; 2009 Jul; 11(7):1682-91. PubMed ID: 19239485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of mecillinam-resistant mutants of Caulobacter crescentus deficient in stalk biosynthesis.
    Seitz LC; Brun YV
    J Bacteriol; 1998 Oct; 180(19):5235-9. PubMed ID: 9748460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Uranium Concentration and pH on U-Phosphate Biomineralization by
    Morrison KD; Zavarin M; Kersting AB; Begg JD; Mason HE; Balboni E; Jiao Y
    Environ Sci Technol; 2021 Feb; 55(3):1626-1636. PubMed ID: 33471994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.