These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25002474)

  • 1. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
    Jarmoskaite I; Bhaskaran H; Seifert S; Russell R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
    Jarmoskaite I; Tijerina P; Russell R
    J Biol Chem; 2021; 296():100132. PubMed ID: 33262215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
    Busa VF; Rector MJ; Russell R
    Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA.
    Grohman JK; Del Campo M; Bhaskaran H; Tijerina P; Lambowitz AM; Russell R
    Biochemistry; 2007 Mar; 46(11):3013-22. PubMed ID: 17311413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
    Jarmoskaite I; Helmers AE; Russell R
    Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
    Bhaskaran H; Russell R
    Nature; 2007 Oct; 449(7165):1014-8. PubMed ID: 17960235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R
    J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
    Pan C; Potratz JP; Cannon B; Simpson ZB; Ziehr JL; Tijerina P; Russell R
    PLoS Biol; 2014 Oct; 12(10):e1001981. PubMed ID: 25350280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing.
    Mohr S; Stryker JM; Lambowitz AM
    Cell; 2002 Jun; 109(6):769-79. PubMed ID: 12086675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-facilitated folding of group II intron ribozymes.
    Fedorova O; Solem A; Pyle AM
    J Mol Biol; 2010 Apr; 397(3):799-813. PubMed ID: 20138894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA catalysis as a probe for chaperone activity of DEAD-box helicases.
    Potratz JP; Russell R
    Methods Enzymol; 2012; 511():111-30. PubMed ID: 22713317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
    Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM
    Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail.
    Mallam AL; Jarmoskaite I; Tijerina P; Del Campo M; Seifert S; Guo L; Russell R; Lambowitz AM
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12254-9. PubMed ID: 21746911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
    Thirumalai D; Lorimer GH; Hyeon C
    Protein Sci; 2020 Feb; 29(2):360-377. PubMed ID: 31800116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.