These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25002970)

  • 21. Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis.
    Kumari P; Kumar S; Kaur K; Gupta UD; Bhagyawant SS; Tyagi JS
    Biochem J; 2020 May; 477(9):1669-1682. PubMed ID: 32309848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models.
    Converse PJ; Karakousis PC; Klinkenberg LG; Kesavan AK; Ly LH; Allen SS; Grosset JH; Jain SK; Lamichhane G; Manabe YC; McMurray DN; Nuermberger EL; Bishai WR
    Infect Immun; 2009 Mar; 77(3):1230-7. PubMed ID: 19103767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis.
    Chim N; Johnson PM; Goulding CW
    J Inorg Biochem; 2014 Apr; 133():118-26. PubMed ID: 24314844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of the CO and NOBound DosS GAF-A domain and implications for DosS signaling in Mycobacterium tuberculosis.
    Madrona Y; Waddling CA; Ortiz de Montellano PR
    Arch Biochem Biophys; 2016 Dec; 612():1-8. PubMed ID: 27729224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serine 83 in DosR, a response regulator from Mycobacterium tuberculosis, promotes its transition from an activated, phosphorylated state to an inactive, unphosphorylated state.
    Cho HY; Kang BS
    Biochem Biophys Res Commun; 2014 Feb; 444(4):651-5. PubMed ID: 24491537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen triggers signal transduction in the DevS (DosS) sensor of Mycobacterium tuberculosis by modulating the quaternary structure.
    Lobão JBDS; Gondim ACS; Guimarães WG; Gilles-Gonzalez MA; Lopes LGF; Sousa EHS
    FEBS J; 2019 Feb; 286(3):479-494. PubMed ID: 30570222
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Gautam US; Mehra S; Kumari P; Alvarez X; Niu T; Tyagi JS; Kaushal D
    Commun Biol; 2019; 2():349. PubMed ID: 31552302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique Regulation of the DosR Regulon in the Beijing Lineage of Mycobacterium tuberculosis.
    Domenech P; Zou J; Averback A; Syed N; Curtis D; Donato S; Reed MB
    J Bacteriol; 2017 Jan; 199(2):. PubMed ID: 27799329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection.
    Shiloh MU; Manzanillo P; Cox JS
    Cell Host Microbe; 2008 May; 3(5):323-30. PubMed ID: 18474359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distal Hydrogen-bonding Interactions in Ligand Sensing and Signaling by Mycobacterium tuberculosis DosS.
    Basudhar D; Madrona Y; Yukl ET; Sivaramakrishnan S; Nishida CR; Moënne-Loccoz P; Ortiz de Montellano PR
    J Biol Chem; 2016 Jul; 291(31):16100-11. PubMed ID: 27235395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [SENSORS IN MYCOBACTERIA FOR THE DETECTION OF REDOX STRESS].
    Takii T
    Kekkaku; 2015 Jul; 90(7):579-91. PubMed ID: 26630729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv.
    Lee HN; Jung KE; Ko IJ; Baik HS; Oh JI
    J Microbiol; 2012 Apr; 50(2):270-7. PubMed ID: 22538656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis.
    Cho HY; Cho HJ; Kim YM; Oh JI; Kang BS
    J Biol Chem; 2009 May; 284(19):13057-67. PubMed ID: 19276084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2.3 A X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis.
    Podust LM; Ioanoviciu A; Ortiz de Montellano PR
    Biochemistry; 2008 Nov; 47(47):12523-31. PubMed ID: 18980385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis.
    Yukl ET; Ioanoviciu A; Sivaramakrishnan S; Nakano MM; Ortiz de Montellano PR; Moënne-Loccoz P
    Biochemistry; 2011 Feb; 50(6):1023-8. PubMed ID: 21250657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The emerging role of gasotransmitters in the pathogenesis of tuberculosis.
    Chinta KC; Saini V; Glasgow JN; Mazorodze JH; Rahman MA; Reddy D; Lancaster JR; Steyn AJ
    Nitric Oxide; 2016 Sep; 59():28-41. PubMed ID: 27387335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative genomics of the dormancy regulons in mycobacteria.
    Gerasimova A; Kazakov AE; Arkin AP; Dubchak I; Gelfand MS
    J Bacteriol; 2011 Jul; 193(14):3446-52. PubMed ID: 21602344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis.
    Chao JD; Papavinasasundaram KG; Zheng X; Chávez-Steenbock A; Wang X; Lee GQ; Av-Gay Y
    J Biol Chem; 2010 Sep; 285(38):29239-46. PubMed ID: 20630871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase.
    Kaur K; Taneja NK; Dhingra S; Tyagi JS
    BMC Microbiol; 2014 Jul; 14():195. PubMed ID: 25048654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Aptamer Targets
    Chauhan P; Datta I; Dhiman A; Shankar U; Kumar A; Vashist A; Sharma TK; Tyagi JS
    ACS Infect Dis; 2022 Dec; 8(12):2540-2551. PubMed ID: 36332135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.