BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25002999)

  • 1. Disease mutations in the prion-like domains of hnRNPA1 and hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly.
    Shorter J; Taylor JP
    Rare Dis; 2013; 1():e25200. PubMed ID: 25002999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.
    Kim HJ; Kim NC; Wang YD; Scarborough EA; Moore J; Diaz Z; MacLea KS; Freibaum B; Li S; Molliex A; Kanagaraj AP; Carter R; Boylan KB; Wojtas AM; Rademakers R; Pinkus JL; Greenberg SA; Trojanowski JQ; Traynor BJ; Smith BN; Topp S; Gkazi AS; Miller J; Shaw CE; Kottlors M; Kirschner J; Pestronk A; Li YR; Ford AF; Gitler AD; Benatar M; King OD; Kimonis VE; Ross ED; Weihl CC; Shorter J; Taylor JP
    Nature; 2013 Mar; 495(7442):467-73. PubMed ID: 23455423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies.
    Guo L; Shorter J
    Cold Spring Harb Perspect Med; 2017 Sep; 7(9):. PubMed ID: 27920024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.
    March ZM; King OD; Shorter J
    Brain Res; 2016 Sep; 1647():9-18. PubMed ID: 26996412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains.
    Guo L; Kim HJ; Wang H; Monaghan J; Freyermuth F; Sung JC; O'Donovan K; Fare CM; Diaz Z; Singh N; Zhang ZC; Coughlin M; Sweeny EA; DeSantis ME; Jackrel ME; Rodell CB; Burdick JA; King OD; Gitler AD; Lagier-Tourenne C; Pandey UB; Chook YM; Taylor JP; Shorter J
    Cell; 2018 Apr; 173(3):677-692.e20. PubMed ID: 29677512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis.
    Calini D; Corrado L; Del Bo R; Gagliardi S; Pensato V; Verde F; Corti S; Mazzini L; Milani P; Castellotti B; Bertolin C; Sorarù G; Cereda C; Comi GP; D'Alfonso S; Gellera C; Ticozzi N; Landers JE; Ratti A; Silani V;
    Neurobiol Aging; 2013 Nov; 34(11):2695.e11-2. PubMed ID: 23827524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and Pathological Assessment of hnRNPA1, hnRNPA2/B1, and hnRNPA3 in Familial and Sporadic Amyotrophic Lateral Sclerosis.
    Fifita JA; Zhang KY; Galper J; Williams KL; McCann EP; Hogan AL; Saunders N; Bauer D; Tarr IS; Pamphlett R; Nicholson GA; Rowe D; Yang S; Blair IP
    Neurodegener Dis; 2017; 17(6):304-312. PubMed ID: 29131108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules.
    Boncella AE; Shattuck JE; Cascarina SM; Paul KR; Baer MH; Fomicheva A; Lamb AK; Ross ED
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5826-5835. PubMed ID: 32127480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein.
    Batlle C; Fernández MR; Iglesias V; Ventura S
    FEBS Lett; 2017 Jul; 591(13):1966-1971. PubMed ID: 28542905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.
    King OD; Gitler AD; Shorter J
    Brain Res; 2012 Jun; 1462():61-80. PubMed ID: 22445064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.
    Mitsuhashi K; Ito D; Mashima K; Oyama M; Takahashi S; Suzuki N
    Sci Rep; 2017 Dec; 7(1):16871. PubMed ID: 29203801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies.
    Fomicheva A; Ross ED
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders.
    Naskar A; Nayak A; Salaikumaran MR; Vishal SS; Gopal PP
    Front Mol Neurosci; 2023; 16():1242925. PubMed ID: 37720552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of hnRNPA1 in ALS spinal cord motor neurons with TDP-43-positive inclusions.
    Honda H; Hamasaki H; Wakamiya T; Koyama S; Suzuki SO; Fujii N; Iwaki T
    Neuropathology; 2015 Feb; 35(1):37-43. PubMed ID: 25338872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases.
    Picchiarelli G; Dupuis L
    Cell Stress; 2020 Mar; 4(4):76-91. PubMed ID: 32292882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation.
    Beijer D; Kim HJ; Guo L; O'Donovan K; Mademan I; Deconinck T; Van Schil K; Fare CM; Drake LE; Ford AF; Kochański A; Kabzińska D; Dubuisson N; Van den Bergh P; Voermans NC; Lemmers RJ; van der Maarel SM; Bonner D; Sampson JB; Wheeler MT; Mehrabyan A; Palmer S; De Jonghe P; Shorter J; Taylor JP; Baets J
    JCI Insight; 2021 Jul; 6(14):. PubMed ID: 34291734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes.
    Cascarina SM; Ross ED
    BMC Genomics; 2020 Jan; 21(1):23. PubMed ID: 31914925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interchangeable prion-like domain is required for Ty1 retrotransposition.
    Beckwith SL; Nomberg EJ; Newman AC; Taylor JV; Guerrero RC; Garfinkel DJ
    bioRxiv; 2023 Feb; ():. PubMed ID: 36909481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons.
    Vishal SS; Wijegunawardana D; Salaikumaran MR; Gopal PP
    Front Cell Dev Biol; 2022; 10():876893. PubMed ID: 35646935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.