BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25003013)

  • 1. Common skeletal features in rare diseases: New links between ciliopathies and FGF-related syndromes.
    Yannakoudakis BZ; Liu KJ
    Rare Dis; 2013; 1():e27109. PubMed ID: 25003013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes.
    Tabler JM; Barrell WB; Szabo-Rogers HL; Healy C; Yeung Y; Perdiguero EG; Schulz C; Yannakoudakis BZ; Mesbahi A; Wlodarczyk B; Geissmann F; Finnell RH; Wallingford JB; Liu KJ
    Dev Cell; 2013 Jun; 25(6):623-35. PubMed ID: 23806618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.
    Teven CM; Farina EM; Rivas J; Reid RR
    Genes Dis; 2014 Dec; 1(2):199-213. PubMed ID: 25679016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies.
    Bonatto Paese CL; Chang CF; Kristeková D; Brugmann SA
    Dis Model Mech; 2022 Aug; 15(8):. PubMed ID: 35818799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models.
    Su N; Jin M; Chen L
    Bone Res; 2014; 2():14003. PubMed ID: 26273516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biallelic loss of function variants in FUZ result in an orofaciodigital syndrome.
    Singh S; Nampoothiri S; Narayanan DL; Chaudhry C; Salvankar S; Girisha KM
    Eur J Hum Genet; 2024 May; ():. PubMed ID: 38702430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling.
    Bonatto Paese CL; Brooks EC; Aarnio-Peterson M; Brugmann SA
    Development; 2021 Feb; 148(4):. PubMed ID: 33589509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel ciliopathic skull defect arising from excess neural crest.
    Tabler JM; Rice CP; Liu KJ; Wallingford JB
    Dev Biol; 2016 Sep; 417(1):4-10. PubMed ID: 27395007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal ciliopathies: a pattern recognition approach.
    Handa A; Voss U; Hammarsjö A; Grigelioniene G; Nishimura G
    Jpn J Radiol; 2020 Mar; 38(3):193-206. PubMed ID: 31965514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel variant of the ciliopathic gene FUZZY associated with craniosynostosis.
    Barrell WB; Adel Al-Lami H; Goos JAC; Swagemakers SMA; van Dooren M; Torban E; van der Spek PJ; Mathijssen IMJ; Liu KJ
    Eur J Hum Genet; 2022 Mar; 30(3):282-290. PubMed ID: 34719684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of FGF signaling in skeletal development and human genetic diseases.
    Chen L; Deng CX
    Front Biosci; 2005 May; 10():1961-76. PubMed ID: 15769677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of FGFs/FGFRs in skeletal development and bone regeneration.
    Du X; Xie Y; Xian CJ; Chen L
    J Cell Physiol; 2012 Dec; 227(12):3731-43. PubMed ID: 22378383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant fibroblast growth factor receptor signaling in bladder and other cancers.
    Chaffer CL; Dopheide B; Savagner P; Thompson EW; Williams ED
    Differentiation; 2007 Nov; 75(9):831-42. PubMed ID: 17697126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF and FGFR signaling in chondrodysplasias and craniosynostosis.
    Marie PJ; Coffin JD; Hurley MM
    J Cell Biochem; 2005 Dec; 96(5):888-96. PubMed ID: 16149058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered FGF signalling in congenital craniofacial and skeletal disorders.
    Moosa S; Wollnik B
    Semin Cell Dev Biol; 2016 May; 53():115-25. PubMed ID: 26686047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis.
    Li X; Young NM; Tropp S; Hu D; Xu Y; Hallgrímsson B; Marcucio RS
    Hum Mol Genet; 2013 Dec; 22(25):5160-72. PubMed ID: 23906837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signaling in craniofacial biological control and pathological craniofacial development.
    Hatch NE
    Crit Rev Eukaryot Gene Expr; 2010; 20(4):295-311. PubMed ID: 21395503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for fibroblast growth factor receptor activation.
    Mohammadi M; Olsen SK; Ibrahimi OA
    Cytokine Growth Factor Rev; 2005 Apr; 16(2):107-37. PubMed ID: 15863029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function.
    Lu P; Minowada G; Martin GR
    Development; 2006 Jan; 133(1):33-42. PubMed ID: 16308330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.
    Léger S; Brand M
    Mech Dev; 2002 Nov; 119(1):91-108. PubMed ID: 12385757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.