BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25003220)

  • 1. Conversion of human pancreatic acinar cells toward a ductal-mesenchymal phenotype and the role of transforming growth factor β and activin signaling.
    De Waele E; Wauters E; Ling Z; Bouwens L
    Pancreas; 2014 Oct; 43(7):1083-92. PubMed ID: 25003220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas.
    Houbracken I; de Waele E; Lardon J; Ling Z; Heimberg H; Rooman I; Bouwens L
    Gastroenterology; 2011 Aug; 141(2):731-41, 741.e1-4. PubMed ID: 21703267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adult human pancreatic acinar cells dedifferentiate into an embryonic progenitor-like state in 3D suspension culture.
    Baldan J; Houbracken I; Rooman I; Bouwens L
    Sci Rep; 2019 Mar; 9(1):4040. PubMed ID: 30858455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paracrine Secretion of Transforming Growth Factor β by Ductal Cells Promotes Acinar-to-Ductal Metaplasia in Cultured Human Exocrine Pancreas Tissues.
    Akanuma N; Liu J; Liou GY; Yin X; Bejar KR; Liu C; Sun LZ; Storz P; Wang P
    Pancreas; 2017 Oct; 46(9):1202-1207. PubMed ID: 28902792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Expression of TGF-β Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation.
    Woods LT; Camden JM; El-Sayed FG; Khalafalla MG; Petris MJ; Erb L; Weisman GA
    PLoS One; 2015; 10(5):e0123641. PubMed ID: 25955532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lineage Tracing of Primary Human Pancreatic Acinar and Ductal Cells for Studying Acinar-to-Ductal Metaplasia.
    Liu J; Wang P
    Methods Mol Biol; 2019; 1882():55-62. PubMed ID: 30378043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice.
    Martinelli P; Cañamero M; del Pozo N; Madriles F; Zapata A; Real FX
    Gut; 2013 Oct; 62(10):1481-8. PubMed ID: 23002247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis.
    Mfopou JK; Houbracken I; Wauters E; Mathijs I; Song I; Himpe E; Baldan J; Heimberg H; Bouwens L
    Biosci Rep; 2016 Jun; 36(3):. PubMed ID: 26987985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.
    Skoudy A; Rovira M; Savatier P; Martin F; León-Quinto T; Soria B; Real FX
    Biochem J; 2004 May; 379(Pt 3):749-56. PubMed ID: 14733613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMP-3 promotes mesenchymal stem cell proliferation through the TGF-beta/activin signaling pathway.
    Stewart A; Guan H; Yang K
    J Cell Physiol; 2010 Jun; 223(3):658-66. PubMed ID: 20143330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel 2-step culture model for long-term in vitro maintenance of human pancreatic acinar cells.
    Bläuer M; Sand J; Nordback I; Laukkarinen J
    Pancreas; 2014 Jul; 43(5):762-7. PubMed ID: 24927222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and characterization of the duct cell-enriching process during serum-free suspension and monolayer culture using the human exocrine pancreas fraction.
    Klein T; Heremans Y; Heimberg H; Pipeleers D; Madsen OD; Serup P; Heller RS
    Pancreas; 2009 Jan; 38(1):36-48. PubMed ID: 18665014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid hormones promote endocrine differentiation at expenses of exocrine tissue.
    Aïello V; Moreno-Asso A; Servitja JM; Martín M
    Exp Cell Res; 2014 Apr; 322(2):236-48. PubMed ID: 24503054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542.
    Mahmood A; Harkness L; Schrøder HD; Abdallah BM; Kassem M
    J Bone Miner Res; 2010 Jun; 25(6):1216-33. PubMed ID: 20200949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.
    Baertschiger RM; Bosco D; Morel P; Serre-Beinier V; Berney T; Buhler LH; Gonelle-Gispert C
    Pancreas; 2008 Jul; 37(1):75-84. PubMed ID: 18580448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-β induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells.
    Shin JA; Hong OK; Lee HJ; Jeon SY; Kim JW; Lee SH; Cho JH; Lee JM; Choi YH; Chang SA; Son HY; Kim JH; Yoon KH
    J Cell Biochem; 2011 Jan; 112(1):179-88. PubMed ID: 21069735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luteolin inhibits pancreatitis‑induced acinar‑ductal metaplasia, proliferation and epithelial‑mesenchymal transition of acinar cells.
    Huang X; Bhugul PA; Fan G; Ye T; Huang S; Dai S; Chen B; Zhou M
    Mol Med Rep; 2018 Mar; 17(3):3681-3689. PubMed ID: 29286098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the role of bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells in vitro.
    Yamasaki A; Kasai A; Toi A; Kurita M; Kimoto S; Hayata-Takano A; Nakazawa T; Nagayasu K; Shintani N; Hashimoto R; Ito A; Meltzer HY; Ago Y; Waschek JA; Onaka Y; Matsuda T; Baba A; Hashimoto H
    J Neurochem; 2015 Feb; 132(4):418-28. PubMed ID: 25421849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells.
    Cleveland MH; Sawyer JM; Afelik S; Jensen J; Leach SD
    Semin Cell Dev Biol; 2012 Aug; 23(6):711-9. PubMed ID: 22743232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.