BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2500339)

  • 1. Functional analysis of the signal-sequence processing site of yeast acid phosphatase.
    Monod M; Haguenauer-Tsapis R; Rauseo-Koenig I; Hinnen A
    Eur J Biochem; 1989 Jun; 182(2):213-21. PubMed ID: 2500339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEC11 is required for signal peptide processing and yeast cell growth.
    Böhni PC; Deshaies RJ; Schekman RW
    J Cell Biol; 1988 Apr; 106(4):1035-42. PubMed ID: 3283143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase.
    Haguenauer-Tsapis R; Hinnen A
    Mol Cell Biol; 1984 Dec; 4(12):2668-75. PubMed ID: 6098819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deletion that includes the segment coding for the signal peptidase cleavage site delays release of Saccharomyces cerevisiae acid phosphatase from the endoplasmic reticulum.
    Haguenauer-Tsapis R; Nagy M; Ryter A
    Mol Cell Biol; 1986 Feb; 6(2):723-9. PubMed ID: 3537693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide.
    Arima K; Oshima T; Kubota I; Nakamura N; Mizunaga T; Toh-e A
    Nucleic Acids Res; 1983 Mar; 11(6):1657-72. PubMed ID: 6300772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of alpha-factor secretion signals by fusing with acid phosphatase of yeast.
    Sidhu RS; Bollon AP
    Gene; 1987; 54(2-3):175-84. PubMed ID: 2820840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal peptide specificity in posttranslational processing of the plant protein phaseolin in Saccharomyces cerevisiae.
    Cramer JH; Lea K; Schaber MD; Kramer RA
    Mol Cell Biol; 1987 Jan; 7(1):121-8. PubMed ID: 3031451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.
    Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A
    Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase.
    Behrens M; Michaelis G; Pratje E
    Mol Gen Genet; 1991 Aug; 228(1-2):167-76. PubMed ID: 1886606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast acid phosphatase can enter the secretory pathway without its N-terminal signal sequence.
    Silve S; Monod M; Hinnen A; Haguenauer-Tsapis R
    Mol Cell Biol; 1987 Sep; 7(9):3306-14. PubMed ID: 3313013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the signal sequence of prepro-alpha-factor inhibit both translocation into the endoplasmic reticulum and processing by signal peptidase in yeast cells.
    Allison DS; Young ET
    Mol Cell Biol; 1989 Nov; 9(11):4977-85. PubMed ID: 2513481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of secretory protein-encoding genes by fusion with PHO5 in Saccharomyces cerevisiae.
    Sidhu RS; Mathewes S; Bollon AP
    Gene; 1991 Oct; 107(1):111-8. PubMed ID: 1743509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa.
    Strom MS; Lory S
    J Bacteriol; 1992 Nov; 174(22):7345-51. PubMed ID: 1429457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase.
    Tréton BY; Le Dall MT; Gaillardin CM
    Curr Genet; 1992 Nov; 22(5):345-55. PubMed ID: 1423722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial plasmid pBR322 sequences serve as upstream activating sequences in Saccharomyces cerevisiae.
    Sidhu RS; Bollon AP
    Yeast; 1990; 6(3):221-9. PubMed ID: 2190432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae.
    Krebs HO; Hoffschulte HK; Müller M
    Eur J Biochem; 1989 May; 181(2):323-9. PubMed ID: 2653826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defective Escherichia coli signal peptides function in yeast.
    Pines O; Lunn CA; Inouye M
    Mol Microbiol; 1988 Mar; 2(2):209-17. PubMed ID: 3288832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase.
    Shen LM; Lee JI; Cheng SY; Jutte H; Kuhn A; Dalbey RE
    Biochemistry; 1991 Dec; 30(51):11775-81. PubMed ID: 1751494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.