These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25003577)

  • 21. EdgeMarker: Identifying differentially correlated molecule pairs as edge-biomarkers.
    Zhang W; Zeng T; Chen L
    J Theor Biol; 2014 Dec; 362():35-43. PubMed ID: 24931676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling.
    Toh H; Horimoto K
    Bioinformatics; 2002 Feb; 18(2):287-97. PubMed ID: 11847076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing Metabolic Association Networks Using High-dimensional Mass Spectrometry Data.
    Koo I; Wei X; Shi X; Zhou Z; Kim S; Zhang X
    Chemometr Intell Lab Syst; 2014 Nov; 138():193-202. PubMed ID: 25414536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Arabidopsis gene network based on the graphical Gaussian model.
    Ma S; Gong Q; Bohnert HJ
    Genome Res; 2007 Nov; 17(11):1614-25. PubMed ID: 17921353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways.
    Salviato E; Djordjilović V; Chiogna M; Romualdi C
    PLoS Comput Biol; 2019 Oct; 15(10):e1007357. PubMed ID: 31652275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GeNICE: A Novel Framework for Gene Network Inference by Clustering, Exhaustive Search, and Multivariate Analysis.
    De Souza Jacomini R; Martins DC; Da Silva FL; Costa AHR
    J Comput Biol; 2017 Aug; 24(8):809-830. PubMed ID: 28636461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inference of regulatory networks with a convergence improved MCMC sampler.
    Agostinho NB; Machado KS; Werhli AV
    BMC Bioinformatics; 2015 Sep; 16():306. PubMed ID: 26399857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery.
    Min W; Liu J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):944-953. PubMed ID: 28113328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems.
    Villers F; Schaeffer B; Bertin C; Huet S
    Stat Appl Genet Mol Biol; 2008; 7(1):Article 14. PubMed ID: 18976229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Sample Size and Dimensionality on the Performance of Four Algorithms for Inference of Association Networks in Metabonomics.
    Suarez-Diez M; Saccenti E
    J Proteome Res; 2015 Dec; 14(12):5119-30. PubMed ID: 26496246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes.
    Chu JH; Lazarus R; Carey VJ; Raby BA
    BMC Syst Biol; 2011 May; 5():89. PubMed ID: 21627793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assisted estimation of gene expression graphical models.
    Yi H; Zhang Q; Sun Y; Ma S
    Genet Epidemiol; 2021 Jun; 45(4):372-385. PubMed ID: 33527531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural influence of gene networks on their inference: analysis of C3NET.
    Altay G; Emmert-Streib F
    Biol Direct; 2011 Jun; 6():31. PubMed ID: 21696592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.