BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25004156)

  • 1. An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol.
    Pilehvar S; Dierckx T; Blust R; Breugelmans T; De Wael K
    Sensors (Basel); 2014 Jul; 14(7):12059-69. PubMed ID: 25004156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes.
    Zhou L; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Talanta; 2017 May; 167():544-549. PubMed ID: 28340759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemical aptasensor based on PEI-C
    He B; Wang S
    Mikrochim Acta; 2021 Jan; 188(1):22. PubMed ID: 33404928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor.
    Yadav SK; Agrawal B; Chandra P; Goyal RN
    Biosens Bioelectron; 2014 May; 55():337-42. PubMed ID: 24412768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle.
    Roushani M; Rahmati Z; Hoseini SJ; Hashemi Fath R
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110451. PubMed ID: 31472389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-based competitive electrochemical biosensor for brevetoxin-2.
    Eissa S; Siaj M; Zourob M
    Biosens Bioelectron; 2015 Jul; 69():148-54. PubMed ID: 25725463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles.
    Roushani M; Rahmati Z; Farokhi S; Hoseini SJ; Fath RH
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110388. PubMed ID: 31923985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A.
    Kuang H; Chen W; Xu D; Xu L; Zhu Y; Liu L; Chu H; Peng C; Xu C; Zhu S
    Biosens Bioelectron; 2010 Oct; 26(2):710-6. PubMed ID: 20643539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit.
    Pilehvar S; Mehta J; Dardenne F; Robbens J; Blust R; De Wael K
    Anal Chem; 2012 Aug; 84(15):6753-8. PubMed ID: 22725137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive sandwich-type electrochemical aptasensing platform based on Ti
    Yao X; Yang L; Yang S; Shen J; Huo D; Fa H; Hou C; Yang M
    Anal Methods; 2024 Jun; 16(24):3867-3877. PubMed ID: 38828675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection.
    Zhu X; Gao L; Tang L; Peng B; Huang H; Wang J; Yu J; Ouyang X; Tan J
    Biosens Bioelectron; 2019 Dec; 146():111756. PubMed ID: 31605990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.
    Radi AE; Muñoz-Berbel X; Lates V; Marty JL
    Biosens Bioelectron; 2009 Mar; 24(7):1888-92. PubMed ID: 19013783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol.
    Ma X; Li H; Qiao S; Huang C; Liu Q; Shen X; Geng Y; Xu W; Sun C
    Food Chem; 2020 Jan; 302():125359. PubMed ID: 31442702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Lateral Flow Immunochromatographic Strips for Micropollutant Screening Using Colorants of Aptamer-Functionalized Nanogold Particles, Part II: Experimental Verification with Aflatoxin B1 and Chloramphenicol.
    Zhang S; Zhao S; Wang S; Liu J; Dong Y
    J AOAC Int; 2018 Sep; 101(5):1408-1414. PubMed ID: 29743135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a.
    Elshafey R; Siaj M; Zourob M
    Biosens Bioelectron; 2015 Jun; 68():295-302. PubMed ID: 25594161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reusable impedimetric aptasensor.
    Radi AE; Acero Sánchez JL; Baldrich E; O'Sullivan CK
    Anal Chem; 2005 Oct; 77(19):6320-3. PubMed ID: 16194094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR.
    Duan Y; Wang L; Gao Z; Wang H; Zhang H; Li H
    Talanta; 2017 Apr; 165():671-676. PubMed ID: 28153315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers.
    Mejri-Omrani N; Miodek A; Zribi B; Marrakchi M; Hamdi M; Marty JL; Korri-Youssoufi H
    Anal Chim Acta; 2016 May; 920():37-46. PubMed ID: 27114221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.
    Yan C; Zhang J; Yao L; Xue F; Lu J; Li B; Chen W
    Food Chem; 2018 Sep; 260():208-212. PubMed ID: 29699664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.