These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 25004518)
1. Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element. Sénégond N; Boulmé A; Plag C; Teston F; Certon D IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1505-18. PubMed ID: 25004518 [TBL] [Abstract][Full Text] [Related]
2. CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through Fourier transform methods. Rønnekleiv A IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2173-84. PubMed ID: 16463484 [TBL] [Abstract][Full Text] [Related]
4. A large-signal model for CMUT arrays with arbitrary membrane geometry operating in non-collapsed mode. Satir S; Zahorian J; Degertekin FL IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2426-39. PubMed ID: 24158297 [TBL] [Abstract][Full Text] [Related]
5. Equivalent circuit-based analysis of CMUT cell dynamics in arrays. Oguz HK; Atalar A; Köymen H IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):1016-24. PubMed ID: 23661137 [TBL] [Abstract][Full Text] [Related]
6. A Boundary Element Model for CMUT-Arrays Loaded by a Viscoelastic Medium. Hery M; Senegond N; Certon D IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):779-788. PubMed ID: 31751236 [TBL] [Abstract][Full Text] [Related]
7. A multiscale model for array of capacitive micromachined ultrasonic transducers. Meynier C; Teston F; Certon D J Acoust Soc Am; 2010 Nov; 128(5):2549-61. PubMed ID: 21110553 [TBL] [Abstract][Full Text] [Related]
8. Investigations of the Effects of Geometric Imperfections on the Nonlinear Static and Dynamic Behavior of Capacitive Micomachined Ultrasonic Transducers. Jallouli A; Kacem N; Lardies J Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30400616 [TBL] [Abstract][Full Text] [Related]
9. An improved analytical method to design CMUTs with square diaphragms. Rahman M; Hernandez J; Chowdhury S IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):834-45. PubMed ID: 23549544 [TBL] [Abstract][Full Text] [Related]
10. Air-coupled MUMPs capacitive micromachined ultrasonic transducers with resonant cavities. Octavio Manzanares A; Montero de Espinosa F Ultrasonics; 2012 Apr; 52(4):482-9. PubMed ID: 22099252 [TBL] [Abstract][Full Text] [Related]
11. Design of broadband linear micromachined ultrasonic transducer arrays by means of boundary element method coupled with normal mode theory. Boulmé A; Certon D IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Sep; 62(9):1704-16. PubMed ID: 26415131 [TBL] [Abstract][Full Text] [Related]
12. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers. Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array. Vaithilingam S; Ma TJ; Furukawa Y; Wygant IO; Zhuang X; De La Zerda A; Oralkan O; Kamaya A; Gambhir SS; Jeffrey RB; Khuri-Yakub BT IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2411-9. PubMed ID: 19942528 [TBL] [Abstract][Full Text] [Related]
14. Modeling and Measuring the Effects of Mutual Impedance on Multi-Cell CMUT Configurations. Park KK; Kupnik M; Lee HJ; Khuri-Yakub BT; Wygant IO Proc IEEE Ultrason Symp; 2010 Oct; 2010():431-434. PubMed ID: 21822364 [TBL] [Abstract][Full Text] [Related]
15. 50 kHz capacitive micromachined ultrasonic transducers for generation of highly directional sound with parametric arrays. Wygant IO; Kupnik M; Windsor JC; Wright WM; Wochner MS; Yaralioglu GG; Hamilton MF; Khuri-Yakub BT IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):193-203. PubMed ID: 19213646 [TBL] [Abstract][Full Text] [Related]
16. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging. Novell A; Legros M; Felix N; Bouakaz A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2733-43. PubMed ID: 20040410 [TBL] [Abstract][Full Text] [Related]
17. High-power CMUTs: design and experimental verification. Yamaner FY; Olçum S; Oğuz HK; Bozkurt A; Köymen H; Atalar A IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1276-84. PubMed ID: 22718878 [TBL] [Abstract][Full Text] [Related]
18. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations. Marsden O; Bogey C; Bailly C J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252 [TBL] [Abstract][Full Text] [Related]
19. An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode. Olcum S; Yamaner FY; Bozkurt A; Köymen H; Atalar A IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1468-77. PubMed ID: 21768031 [TBL] [Abstract][Full Text] [Related]
20. A comparison between conventional and collapse-mode capacitive micromachined ultrasonic transducers in 10-MHz 1-D arrays. Park KK; Oralkan O; Khuri-Yakub BT IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1245-55. PubMed ID: 25004488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]