These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 25004519)
1. Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer. Ma J; Guo S; Wu D; Geng X; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1519-29. PubMed ID: 25004519 [TBL] [Abstract][Full Text] [Related]
2. Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials. Constanciel E; N'Djin WA; Bessière F; Chavrier F; Grinberg D; Vignot A; Chevalier P; Chapelon JY; Lafon C IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1868-83. PubMed ID: 24658718 [TBL] [Abstract][Full Text] [Related]
3. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer. Jeong JS; Cannata JM; Shung KK Phys Med Biol; 2010 Apr; 55(7):1889-902. PubMed ID: 20224162 [TBL] [Abstract][Full Text] [Related]
4. Integration of photoacoustic imaging and high-intensity focused ultrasound. Cui H; Staley J; Yang X J Biomed Opt; 2010; 15(2):021312. PubMed ID: 20459234 [TBL] [Abstract][Full Text] [Related]
5. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor. Zhou Y Med Eng Phys; 2015 Mar; 37(3):335-40. PubMed ID: 25659300 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Dual-Frequency Switching HIFU for Optimizing Superficial Ablation. Huang W; Jiao Y; Li J; He Y; Shao W; Cui Y Ultrasound Med Biol; 2024 Jun; 50(6):908-919. PubMed ID: 38548527 [TBL] [Abstract][Full Text] [Related]
7. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals. Kujawska T; Secomski W; Byra M; Postema M; Nowicki A Ultrasonics; 2017 Apr; 76():92-98. PubMed ID: 28086110 [TBL] [Abstract][Full Text] [Related]
8. Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study. Jeong J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):924-31. PubMed ID: 23661126 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of in vivo transesophageal cardiac ablation using a phased ultrasound array. Werner J; Park EJ; Lee H; Francischelli D; Smith NB Ultrasound Med Biol; 2010 May; 36(5):752-60. PubMed ID: 20347517 [TBL] [Abstract][Full Text] [Related]
10. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation. Ramaekers P; Ries M; Moonen CT; de Greef M Med Phys; 2017 Mar; 44(3):1071-1088. PubMed ID: 28058731 [TBL] [Abstract][Full Text] [Related]
11. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography. Kim J; Li S; Kasoji S; Dayton PA; Jiang X Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426 [TBL] [Abstract][Full Text] [Related]
12. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy. Auboiroux V; Dumont E; Petrusca L; Viallon M; Salomir R Phys Med Biol; 2011 Jun; 56(12):3563-82. PubMed ID: 21606558 [TBL] [Abstract][Full Text] [Related]
14. Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: a preliminary study. Jeong JS; Chang JH; Shung KK Ultrasonics; 2012 Aug; 52(6):730-9. PubMed ID: 22356771 [TBL] [Abstract][Full Text] [Related]
15. Temperature rise in tissue ablation using multi-frequency ultrasound. Sijia Guo ; Yun Jing ; Xiaoning Jiang IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1699-707. PubMed ID: 25004540 [TBL] [Abstract][Full Text] [Related]
16. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications. Chen GS; Liu HC; Lin YC; Lin YL IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224 [TBL] [Abstract][Full Text] [Related]
17. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound. Zheng X; Vaezy S Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516 [TBL] [Abstract][Full Text] [Related]
18. Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study. Le N; Song S; Nabi G; Wang R; Huang Z Int J Hyperthermia; 2016 Sep; 32(6):713-22. PubMed ID: 27380284 [TBL] [Abstract][Full Text] [Related]
19. Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study. Kwon DS; Sung JH; Park CY; Jeong JS IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1125-1132. PubMed ID: 29993367 [TBL] [Abstract][Full Text] [Related]
20. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents. Bove T; Zawada T; Serup J; Jessen A; Poli M Skin Res Technol; 2019 Mar; 25(2):217-228. PubMed ID: 30620418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]