These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25004537)

  • 1. Modeling nonlinearities in MEMS oscillators.
    Agrawal DK; Woodhouse J; Seshia AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1646-59. PubMed ID: 25004537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical formulation for phase noise in MEMS oscillators.
    Agrawal D; Seshia A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1938-52. PubMed ID: 25474770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Verification of an Analytical Model for Phase Noise in MEMS Oscillators.
    Agrawal DK; Bizzarri F; Brambilla A; Seshia AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1204-7. PubMed ID: 27295660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dB
    Bouchami A; Elsayed MY; Nabki F
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip.
    Islam MS; Wei R; Lee J; Xie Y; Mandal S; Feng PX
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the Close-to-Carrier Phase Noise in a CMOS-MEMS Oscillator Using a Phase Tunable Sustaining-Amplifier.
    Sobreviela G; Riverola M; Torres F; Uranga A; Barniol N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):888-897. PubMed ID: 28207393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analytical Temperature-Dependent Design Model for Contour-Mode MEMS Resonators and Oscillators Verified by Measurements.
    Stegner J; Gropp S; Podoskin D; Stehr U; Hoffmann M; Hein MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization.
    Perelló-Roig R; Verd J; Bota S; Segura J
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ±0.3 ppm Oven-Controlled MEMS Oscillator Using Structural Resistance-Based Temperature Sensing.
    Liu CS; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1492-1499. PubMed ID: 29993545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New phase-noise model for crystal oscillators: application to the Clapp oscillator.
    Galliou S; Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1422-8. PubMed ID: 14682625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.
    Roy S; Ramiah H; Reza AW; Lim CC; Ferrer EM
    PLoS One; 2016; 11(7):e0158954. PubMed ID: 27391136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L- and X-Band Dual-Frequency Synthesizer Utilizing Lithium Niobate RF-MEMS and Open-Loop Frequency Dividers.
    Kourani A; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1994-2004. PubMed ID: 33395392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-resonator dual-frequency AIN-on-Si MEMS oscillators.
    Lavasani HM; Abdolvand R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):802-13. PubMed ID: 25965675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Portable MEMS Oscillators for Sensing Nanoparticles.
    Chellasivalingam M; Zielinski AT; Whitney TS; Boies AM; Seshia AA
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear response of very high frequency contour mode resonators.
    Gulseren ME; Segovia-Fernandez J; Chang Y; Wang X; Gomez-Diaz JS
    Ultrasonics; 2025 Jan; 145():107463. PubMed ID: 39293233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
    Naing TL; Rocheleau TO; Alon E; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1377-1391. PubMed ID: 31995483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Digital Closed-Loop Sense MEMS Disk Resonator Gyroscope Circuit Design Based on Integrated Analog Front-end.
    Wang Y; Fu Q; Zhang Y; Zhang W; Chen D; Yin L; Liu X
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High nonlinearities in Langevin transducer: a comprehensive model.
    Guyomar D; Ducharne B; Sebald G
    Ultrasonics; 2011 Dec; 51(8):1006-13. PubMed ID: 21724220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low Phase Jitter MEMS Oscillator with Centrally-Anchored Piezoelectric Resonator for Wide Temperature Range Real Time Clock Applications.
    Sahasrabudhe S; Long Y; Liu Z; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; PP():. PubMed ID: 39356611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.